
ATTACHMENT 1 USFWS IPaC

IPaC

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Local office

Virginia Ecological Services Field Office

<a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><

6669 Short Lane Gloucester, VA 23061-4410

http://www.fws.gov/northeast/virginiafield/

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME

STATUS

Indiana Bat Myotis sodalis There is final critical habitat for this species. You the critical habitat. <u>https://ecos.fws.gov/ecp/species/5949</u>	Endangered ur location is outside
Northern Long-eared Bat Myotis septentriona No critical habitat has been designated for this s https://ecos.fws.gov/ecp/species/9045	
Fishes	
NAME	STATUS
Roanoke Logperch Percina rex No critical habitat has been designated for this s <u>https://ecos.fws.gov/ecp/species/1134</u>	Endangered Species.
Flowering Plants	STATUS
Northeastern Bulrush Scirpus ancistrochaetu No critical habitat has been designated for this s https://ecos.fws.gov/ecp/species/6715	
Smooth Coneflower Echinacea laevigata No critical habitat has been designated for this s https://ecos.fws.gov/ecp/species/3473	Endangered species.

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^1 and the Bald and Golden Eagle Protection Act^2 .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

https://ecos.fws.gov/ipac/location/D4CYUSS5RVEQ3JXJCCXQEKW4B4/resources

^{1.} The Migratory Birds Treaty Act of 1918.

2. The <u>Bald and Golden Eagle Protection Act</u> of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/ birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/ conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the USFWS Birds of Conservation Concern (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ below. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found below.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area. JOTFO

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE. "BREEDS ELSEWHERE" INDICATES THAT THE BIRD DOES NOT LIKELY BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Sep 1 to Aug 31

Black-billed Cuckoo Coccyzus erythropthalmus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9399</u>	Breeds May 15 to Oct 10
Black-capped Chickadee Poecile atricapillus practicus This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds Apr 10 to Jul 31
Blue-winged Warbler Vermivora pinus This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds May 1 to Jun 30
Bobolink Dolichonyx oryzivorus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 20 to Jul 31
Canada Warbler Cardellina canadensis This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 20 to Aug 10
Cerulean Warbler Dendroica cerulea This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/2974</u>	Breeds Apr 27 to Jul 20
Eastern Whip-poor-will Antrostomus vociferus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 1 to Aug 20
Golden Eagle Aquila chrysaetos This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/1680</u>	Breeds elsewhere
Golden-winged Warbler Vermivora chrysoptera This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/8745</u>	Breeds May 1 to Jul 20
Kentucky Warbler Oporornis formosus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Apr 20 to Aug 20

Prairie Warbler Dendroica discolor	Breeds May 1 to Jul 31
This is a Bird of Conservation Concern (BCC) throughout its range in	
the continental USA and Alaska.	

Prothonotary Warbler Protonotaria citrea This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Red-headed Woodpecker Melanerpes erythrocephalus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Rusty Blackbird Euphagus carolinus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Wood Thrush Hylocichla mustelina This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Yellow-bellied Sapsucker sphyrapicus varius This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <u>https://ecos.fws.gov/ecp/species/8792</u> Breeds Apr 1 to Jul 31

Breeds May 10 to Sep 10

Breeds elsewhere

Breeds May 10 to Aug 31

Breeds May 10 to Jul 15

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence
- is calculated. This is the probability of presence divided by the maximum probability of presence

across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.

3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (|)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (–)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

		_	0	🗖 proba	bility of	presence	e 📕 bre	eding se	eason	survey e	effort -	– no data
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Bald Eagle Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	4 111	A	1111	++++	++++	++++	# ###	+++	+	++11	1111	+++•
Black-billed Cuckoo BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	- ++++	++++	++++	* * **	+1+	++++	++++	+++	<mark>++</mark> ++	++++	++++

IPaC: Explore Location

Black-capped Chickadee BCC - BCR (This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA)	****	++##	### †	+	++++	8+++	++++	+∎++	#++#	++++	∎≢∔∎	++₩
Blue-winged Warbler BCC - BCR (This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA)	++++	++++	++++	+++#	# +++	++++	₩+++	+++#	*≣++	++++	++++	++++
Bobolink BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++ <mark>+</mark> +	1[++	++++	++++	+11+11	++++ 1	Ċ	444
Canada Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	••••	 N	S	NH	II+II +	++++	++++	++++
Cerulean Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	\$	+++	JIT	1+1+	<mark>++</mark> ∎+	++++	++++	++++	++++	++++
Eastern Whip- poor-will BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	+++#	1+++	1+++	++1+	++++	++++	++++	++++	++++
Golden Eagle Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	++++	++++	++++	++++	++++	++++	++++	++++	++++	++1	++++	+++∎

11/2/2020

IPaC: Explore Location

Golden-winged Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++ ++	++ ++++	+++∎ <mark>∔</mark> ∔		<mark>++</mark> ++	++++	++++	++++	++++ +	-+++
Kentucky Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++ ++	++ ++++	++ + •	4 11++	++++	 ++•	++++	++++	++++ -	-+++
Prairie Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++ ++	++ ++++	++ # # # +	1 ++++	++++	++∎+	++++	•••• 1	0	+++
SPECIES	JAN FEB	MAR	APR MAY	JUN	JUL	AUG	SEP	OCT	NOV E	DEC
Prothonotary Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++ ++	++ ++++	нн н С (26	S	+ } +	+∤ ∎+	++++	++++ +	-+++
Red-headed Woodpecker BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++ #+ < F		# <u>+</u> +# + <mark>+</mark>	+ ++++	#	++++	↓↓ ↓	++++	++++ +	-+++
Rusty Blackbird BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++ ++	♦ ₩ ┼ ♥₩₩	# 1 ## + + +	++ ++++	++++	++++	++++	++#+		•#++
Wood Thrush BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++ ++	++ ++++	++## # <mark> </mark>			1111	***	₩ +++	++++ +	-+++

Yellow-bellied Sapsucker BCC - BCR (This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA)

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. <u>Additional measures</u> and/or <u>permits</u> may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen</u> <u>science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: <u>The Cornell Lab of Ornithology All About Birds Bird Guide</u>, or (if you are unsuccessful in locating the bird of interest there), the <u>Cornell Lab of Ornithology Neotropical Birds</u> <u>guide</u>. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam</u> <u>Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of</u> <u>Engineers District</u>.

WETLAND INFORMATION IS NOT AVAILABLE AT THIS TIME

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the <u>NWI map</u> to view wetlands at this location.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters.

IPaC: Explore Location

Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

NOTFORCONSULTATION

United States Department of the Interior

FISH AND WILDLIFE SERVICE Virginia Ecological Services Field Office 6669 Short Lane Gloucester, VA 23061-4410 Phone: (804) 693-6694 Fax: (804) 693-9032 http://www.fws.gov/northeast/virginiafield/

In Reply Refer To: Consultation Code: 05E2VA00-2021-SLI-0566 Event Code: 05E2VA00-2021-E-01623 Project Name: ROA - Nordt November 06, 2020

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*). Any activity proposed on National Wildlife Refuge lands must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered

species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/ eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List
- USFWS National Wildlife Refuges and Fish Hatcheries

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

(804) 693-6694

Virginia Ecological Services Field Office 6669 Short Lane Gloucester, VA 23061-4410

Project Summary

Consultation Code: 05E2VA00-2021-SLI-0566

Event Code: 05E2VA00-2021-E-01623

Project Name: ROA - Nordt

Project Type: TRANSPORTATION

Project Description: Nordt Property Acquisition and Future Development

Project Location:

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/place/37.32853154525492N79.96874466676425W</u>

Counties: Roanoke, VA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

USFWS National Wildlife Refuge Lands And Fish Hatcheries

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS OR FISH HATCHERIES WITHIN YOUR PROJECT AREA.

ATTACHMENT 2 VaFWIS Search Report

VaFWIS Search Report Compiled on 11/10/2020, 5:11:19 PM

Known or likely to occur within a **3 mile radius around point 37,19,44.5 -79,58,08.7** in **023 Botetourt County, 161 Roanoke County, 770 Roanoke City, VA**

View Map of Site Location

573 Known or Likely Species ordered by Status Concern for Conservation	ı
(displaying first 21) (21 appairs with Status* on Tion 1** on Tion 1**)	

(displaying first 31) (31 species with Status* or Tier I** or Tier II**)									
BOVA Code	<u>Status*</u>	<u>Tier**</u>	<u>Common Name</u>	<u>Scientific Name</u>					
060017	FESE	Ia	<u>Spinymussel, James</u>	Parvaspina collina					
010214	FESE	IIa	Logperch, Roanoke	Percina rex					
030061	FTSE	Ia	<u>Turtle, bog (= Muhlenberg)</u>	Clemmys muhlenbergii					
050022	FTST	Ia	Bat, northern long-eared	Myotis septentrionalis					
060029	FTST	IIa	<u>Lance, yellow</u>	Elliptio lanceolata					
050020	SE	Ia	<u>Bat, little brown</u>	Myotis lucifugus					
050027	SE	Ia	Bat, tri-colored	Perimyotis subflavus					
040096	ST	Ia	<u>Falcon, peregrine</u>	Falco peregrinus					
040293	ST	Ia	<u>Shrike, loggerhead</u>	Lanius ludovicianus					
060173	FPST	Ia	<u>Pigtoe, Atlantic</u>	Fusconaia masoni					
100155	ST	Ia	<u>Skipper, Appalachian grizzled</u>	Pyrgus wyandot					
010127	ST	IIb	<u>Madtom, orangefin</u>	Noturus gilberti					
040292	ST		<u>Shrike, migrant loggerhead</u>	Lanius ludovicianus migrans					
030012	CC	IVa	<u>Rattlesnake, timber</u>	Crotalus horridus					
010174		Ia	Bass, Roanoke	Ambloplites cavifrons					
030040		Ia	<u>Pinesnake, northern</u>	Pituophis melanoleucus melanoleucus					
040092		Ia	<u>Eagle, golden</u>	Aquila chrysaetos					
040306		Ia	Warbler, golden-winged	Vermivora chrysoptera					
050024		Ia	Myotis, eastern small-footed	Myotis leibii					
100248		Ia	<u>Fritillary, regal</u>	Speyeria idalia idalia					
010346		Ib	Shiner, roughhead	Notropis semperasper					
020039		Ic	Salamander, Peaks of Otter	Plethodon hubrichti					
040213		Ic	Owl, northern saw-whet	Aegolius acadicus					
040052		IIa	Duck, American black	Anas rubripes					
040036		IIa	Night-heron, yellow-crowned	Nyctanassa violacea violacea					
040181		IIa	Tern, common	Sterna hirundo					
040320		IIa	Warbler, cerulean	Setophaga cerulea					
040140		IIa	Woodcock, American	Scolopax minor					
040203		IIb	Cuckoo, black-billed	Coccyzus erythropthalmus					
040304		IIc	Warbler, Swainson's	Limnothlypis swainsonii					
100154		IIc	Butterfly, Persius duskywing	Erynnis persius persius					

To view All 573 species View 573

*FE=Federal Endangered; FT=Federal Threatened; SE=State Endangered; ST=State Threatened; FP=Federal Proposed; FC=Federal Candidate; CC=Collection Concern

**I=VA Wildlife Action Plan - Tier II - Critical Conservation Need; II=VA Wildlife Action Plan - Tier II - Very High Conservation Need; IV=VA Wildlife Action Plan - Tier IV - Moderate Conservation Need Virginia Wildlife Action Plan Conservation Opportunity Ranking:

a - On the ground management strategies/actions exist and can be feasibly implemented.;

b - On the ground actions or research needs have been identified but cannot feasibly be implemented at this time.;

c - No on the ground actions or research needs have been identified or all identified conservation opportunities have been exhausted.

Anadromous Fish Use Streams

Impediments to Fish Passage

N/A

Threatened and Endan	gered Waters	(7 Reac	<u>View Map of All</u> <u>Threatened and Endangered Waters</u>								
Stream Name		9.	T&E	Wate	rs Species		View Map				
Stream Name	Highest TE [*]	lighest TE [*] BOVA Code, Status [*] , Tier ^{**} , Common & Scientific Name									
(0194515)	FESE	010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>Yes</u>				
Tinker Creek (0185673)	FESE	010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>Yes</u>				
Tinker Creek (0189851)	FESE	010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>Yes</u>				
Tinker Creek (0190423)	FESE	010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>Yes</u>				
Tinker Creek (0195958)	FESE	010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>Yes</u>				
Tinker Creek (0196006)	FESE	010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>Yes</u>				
Tinker Creek (0198362)	FESE	010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>Yes</u>				

Managed Trout Streams

(1 records)

View Map of All Trout Stream Surveys

Reach ID	Stream Name	Class	Brook Trout	Brown Trout	Rainbow Trout	View Map
05TKR-01	Tinker Creek	Stockable				Yes

Bald Eagle Concentration Areas and Roosts

N/A

Bald Eagle Nests

N/A

Habitat Predicted for Aquatic WAP Tier I & II Species (8 Reaches)

View Map Combined Reaches from Below of Habitat Predicted for WAP Tier I & II Aquatic Species

Streen North	Tier Species									
Stream Name	Highest TE [*]	BOV	VA Code,	Statu	s [*] , Tier ^{**} , Common	& Scientific Name	View Map			
Carvin Creek (30101011)	FESE	010174		Ia	Bass, Roanoke	Ambloplites cavifrons	Yes			
	TESE	010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>105</u>			
Carvin Creek (30101012)	FESE	010174		Ia	Bass, Roanoke	Ambloplites cavifrons	Yes			
Carvin Creek (50101012)	LESE	010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>105</u>			
Carvin Creek (30101012)	FESE	010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>Yes</u>			
Peters Creek (30101011)	FESE	010127	ST	IIb	Madtom, orangefin	Noturus gilberti	Vac			
releis Cieek (S0101011)	LESE	010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>Yes</u>			
		010127	ST	IIb	Madtom, orangefin	Noturus gilberti				
Tinker Creek (30101011)	FESE	010174		Ia	Bass, Roanoke	Ambloplites cavifrons	Yes			
		010214	FESE	IIa	Logperch, Roanoke	Percina rex				
Tinker Creek (30101011)	FESE	010174		Ia	Bass, Roanoke	Ambloplites cavifrons	<u>Yes</u>			

VAFWIS Seach Report

		010214	FESE	IIa	Logperch, Roanoke	Percina rex	
Tinker Creek (30101012)	FESE	010174		Ia	Bass, Roanoke	Ambloplites cavifrons	Vas
		010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>Yes</u>
tributory (20101011)	FESE	010174		Ia	Bass, Roanoke	Ambloplites cavifrons	Vas
tributary (30101011)		010214	FESE	IIa	Logperch, Roanoke	Percina rex	<u>Yes</u>

Habitat Predicted for Terrestrial WAP Tier I & II Species

N/A

Virginia Breeding Bird Atlas Blocks (5 records)

<u>View Map of All Query Results</u> <u>Virginia Breeding Bird Atlas Blocks</u>

		Breedin			
BBA ID	Atlas Quadrangle Block Name	Different Species	Highest TE [*]	Highest Tier ^{**}	View Map
31074	<u>Roanoke, CE</u>	1			Yes
31072	<u>Roanoke, NE</u>	1		III	Yes
31071	<u>Roanoke, NW</u>	1		III	Yes
30074	<u>Salem, CE</u>	11		IV	Yes
30072	<u>Salem, NE</u>	21		III	Yes

Public Holdings:

N/A

Summary of BOVA Species Associated with Cities and Counties of the Commonwealth of Virginia:

433

FESE

Ι

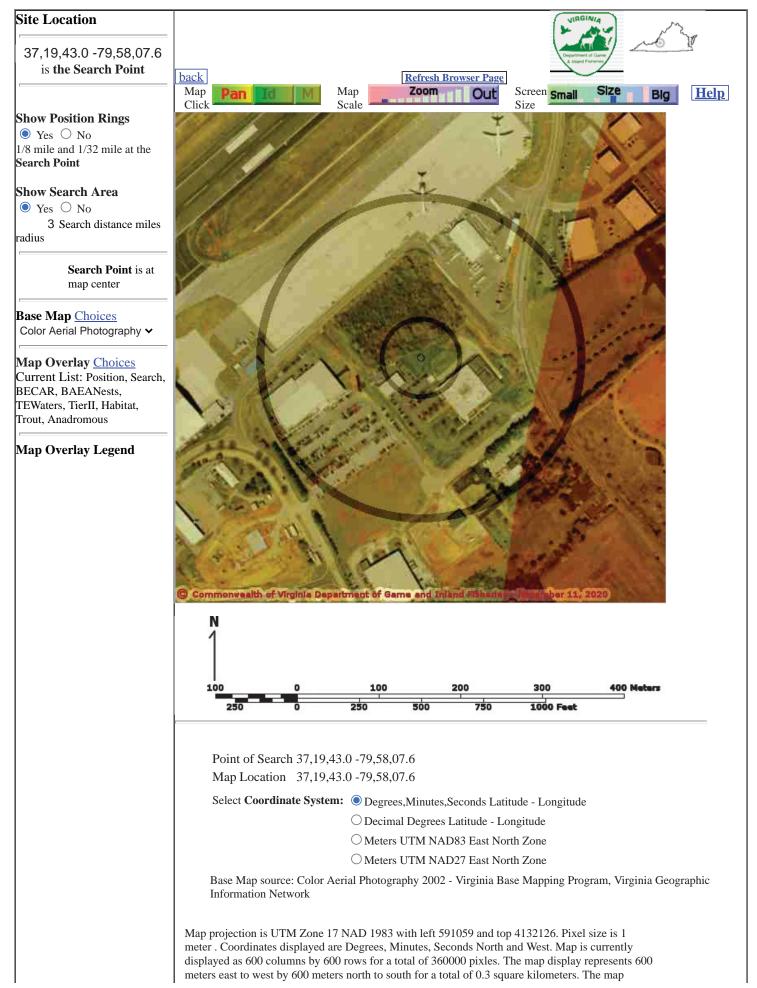
FIPS Code	City and County Name	Different Species	Highest TE	Highest Tier
023	Botetourt	443	FESE	Ι
161	Roanoke	451	FESE	Ι

USGS 7.5' Quadrangles:

Salem Roanoke

770

USGS NRCS Watersheds in Virginia:


Roanoke City

N/A

USGS National 6th Order Watersheds Summary of Wildlife Action Plan Tier I, II, III, and IV Species:

HU6 Code	USGS 6th Order Hydrologic Unit	Different Species	Highest TE	Highest Tier
RU11	Tinker Creek-Buffalo Creek	68	FESE	Ι
RU12	Carvin Creek	69	FESE	Ι
RU13	Tinker Creek-Glade Creek	72	FESE	Ι
RU14	Roanoke River-Peters Creek	66	FESE	Ι

Compiled on 11/10/2020, 5:11:20 PM V1061418.0 report=V searchType= R dist= 4828.032 poi= 37,19,44.5 -79,58,08.7

11/11/2020

VaFWIS Map

T & E Waters	display represents 1968 feet east to west by 1968 feet north to south for a total of 0.1 square miles.
Federal	Topographic maps and Black and white aerial photography for year 1990+- are from the United States Department of the Interior, United States Geological Survey.
State	Color aerial photography aquired 2002 is from Virginia Base Mapping Program, Virginia Geographic Information Network.
Predicted Habitat WAP Tier I & II	Shaded topographic maps are from TOPO! ©2006 National Geographic http://www.national.geographic.com/topo All other map products are from the Commonwealth of Virginia Department of Game and Inland Fisheries.
Aquatic	Fisheries.
Terrestrial	map assembled 2020-11-11 14:53:52 (qa/qc March 21, 2016 12:20 - tn=1061603.0 dist=4828.032 Visitor) \$poi=37.3286111 -79.9687778
Trout Waters	
Class I - IV	
Class V - VI	
Anadromous Fish Reach	
Confirmed	
Potential	
J ²³ Impediment	
Position Rings 1/8 mile and 1/32 mile at the Search Point	
3 mile radius Search Area	
Bald Eagle Concentration Areas and Roosts	
<u>DG</u>	
	© 1998-2020 Commonwealth of Virginia Department of Game and Inland Fisheries

ATTACHMENT 3 Phase I ESA

(Select Appendices) Recommendations, and Subsurface Assessment

ECS Mid-Atlantic, LLC

"Setting the Standard for Service"

Geotechnical • Construction Materials • Environmental • Facilities

July 21, 2021

Danielle Poe Roanoke Regional Airport Commission 5202 Aviation Drive Roanoke, Virginia 24012

ECS Project No. 47: 12509

Reference: Phase I Environmental Site Assessment Report, John C Nordt Property, 1420 Coulter Drive NW, Roanoke, Virginia 24012

Dear Ms. Poe:

ECS Mid-Atlantic, LLC (ECS) was contracted by Roanoke Regional Airport Commission to conduct a Phase I ESA in general accordance with ASTM E1527-13, Standard Practice for Environmental Site Assessments, July 21, 2021. Any exceptions, deletions, Historical Data Failures and Other Data Gaps from this practice are described in the Executive Summary and Section 2.3 of the Phase I ESA report.

The findings of the Phase I ESA included the following Recognized Environmental Conditions (RECs):

- The subject property has been utilized as a jewelry manufacturing facility since the 1980's, which has included the use of hazardous chemicals and heavy metals.
- The subject property contains a 4,000 gallon diesel UST that was reportedly installed in 1984 and then updated with new lines and ancillary equipment in 1998 to bring the system up to code. This UST is utilized to store fuel for the facility's back-up generator. More recently, ECS understands that the UST was equipped with a new tank gauge and leak detection system, making it current with new regulations.
 - While no releases have been reported at the subject property, the long term use as a jewelry manufacturer and the long term use of an UST leads to the potential for undocumented or incidental releases, which is considered to be a REC.

Recommendations

Based on the RECs identified by the Phase I ESA of the subject property, ECS offers the following recommendations for additional assessment:

 ECS recommends completing a Limited Subsurface Sampling Assessment. The subsurface assessment will involve the installation of a minimum of six soil borings using a Geoprobe® direct push sampler and dedicated sampling equipment. Soil borings will be completed in topographically down-gradient locations and around the current UST. If groundwater is encountered, temporary one-inch wells will be installed for the collection of groundwater

ECS Florida, LLC + ECS Mid-Atlantic, LLC + ECS Midwest, LLC + ECS Southeast, LLP + ECS Southwest, LLP ECS Capitol Services, PLLC - An Associate of the ECS Group of Companies

⁷⁶⁷⁰ Enon Drive, Suite 101. Roancke, Virginia 24019 * F: 540-362-2000 * F: 540-362-1202 * ecsilmited.com

samples via a peristaltic pump or dedicated bailers. Borings will be placed in locations biased to where contamination would most likely be found based on the information available at the time. Further, ECS recommends the collection of sub-slab and deep soil gas samples at locations including both the interior and exterior of the facility for a vapor intrusion assessment.

- The estimated cost to complete the services is approximately
 Based on our present schedule we can begin our fieldwork within approximately
 2 weeks of receiving written authorization subject to driller availability. ECS anticipates that the field work will take 2 days to complete.
- 2. ECS recommends that prior to any demolition/renovation activities that an asbestos survey be performed as well as the collection of one Lead Toxicity Characteristic Leaching Procedure (TCLP) sample from the building for lead analysis of the waste stream associated with proposed demolition activities to evaluate if special disposal requirements are needed under US EPA RCRA regulations concerning lead. Further, ECS recommends an Abatement Specification be completed in order to delineate and quantify known and suspect asbestos containing materials in the building and to outline property procedures for the abatement work for the project and outline the contractors' roles and responsibilities in the abatement process.
 - The estimated cost to complete this additional service is approximately
 - reporting could be completed within two weeks of signed authorization.
- ECS recommends that prior to any demolition or change of use activities, the AST, UST, specialized equipment including the incinerator/furnace, 55-gallon drums, and any other containers located on the subject property be disposed of and handled properly.

ECS has appreciated the opportunity to assist you with this project. If you have any questions regarding the Phase I ESA report or the information contained in this letter, please contact us at 540-362-2000.

Respectfully submitted,

ECS Mid-Atlantic, LLC

Sten they

Steven Hay Project Manager shay@ecslimited.com 540-362-2000

Michael I. Makoy

Michael L. Maloy, CPG Principal Geologist mmaloy@ecslimited.com 540-785-6608

Page 2 of 2

PHASE I ENVIRONMENTAL SITE ASSESSMENT

JOHN C NORDT PROPERTY

1420 COULTER DRIVE NW ROANOKE, VIRGINIA 24012

ECS PROJECT NO. 47:12509

FOR: ROANOKE REGIONAL AIRPORT COMMISSION

JULY 21, 2021

"Setting the Standard for Service"

Geotechnical · Construction Materials · Environmental · Facilities

July 21, 2021

Danielle Poe Roanoke Regional Airport Commission 5202 Aviation Drive Roanoke, Virginia 24012

ECS Project No. 47: 12509

Reference: Phase I Environmental Site Assessment Report, John C Nordt Property, 1420 Coulter Drive NW, Roanoke, Virginia 24012

Dear Ms. Poe:

ECS Mid-Atlantic, LLC (ECS) is pleased to provide you with the results of our Phase I Environmental Site Assessment (ESA) for the referenced site. ECS services were provided in general accordance with ECS Proposal No. 47:17126-P authorized on June 23, 2021 and generally meet the requirements of ASTM E1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process and EPA Standards and Practices for All Appropriate Inquiries contained in 40 CFR Part 312.

If there are questions regarding this report, or a need for further information, please contact the undersigned.

Sincerely,

ECS Mid-Atlantic, LLC

stem thuy

Steven Hay Project Manager shay@ecslimited.com 540-362-2000

Misihael I. Makoy

Michael L. Maloy, CPG Principal Geologist mmaloy@ecslimited.com 540-785-6608

7670 Enon Drive, Suite 101, Roanoke, Virginia 24019 • T: 540-362-2000 • F: 540-362-1202 • ecslimited.com

Project Summary

John C Nordt Property 1420 Coulter Drive NW Roanoke, Virginia 24012

Report Section		No Further Action	REC	CREC	HREC	BER	Comment
<u>4.0</u>	User Provided Information	~					
<u>5.1</u>	Federal ASTM Databases		~				Manufacturing use of the subject property, since the 1980's is considered to be a REC
<u>5.2</u>	State ASTM Databases		~				The current onsite UST system is considered to be a REC
<u>5.3</u>	Additional Environmental Record Sources	~					
<u>6.0</u>	Historical Use Information	~					
<u>7.0</u>	Site and Area Reconnaissance		~				Manufacturing use of the subject property, since the 1980's is considered to be a REC
<u>8.0</u>	Additional Services	~					
<u>9.0</u>	Interviews	~					

ENVIRONMENTAL PROFESSIONAL STATEMENT

We declare that, to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in § 312.10 of 40 CFR 312. We have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. We have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Stim they

Steven Hay Project Manager July 21, 2021

Misihael I. Makoy

Michael L. Maloy, CPG Principal Geologist July 21, 2021

TABLE OF CONTENTS

PAGE

1.0	EXECUT	IVE SUN	IMARY	1				
2.0	INTROD	UCTION	۱	3				
	2.1	Purpose	e and Reason for Performing Phase I ESA	3				
	2.2	Scope o	f Services	3				
	2.3	Definitio	ons	3				
	2.4	Limitations						
	2.5	Data Ga	ıps	5				
	2.6	Limiting	Conditions/Deviations	5				
3.0	SUBJECT PROPERTY DESCRIPTION							
	3.1	Subject	Property Location and Legal Description	6				
	3.2	Physical Setting and Hydrogeology						
	3.3	Current Use and Description of the Site						
4.0	USER PROVIDED INFORMATION							
	4.1	Title Information 8						
	4.2	Environmental Liens or Activity and Use Limitations						
	4.3	Specialized Knowledge 8						
	4.4	Commonly Known or Reasonably Ascertainable Information						
	4.5	Valuatic	on Reduction for Environmental Issues 8	8				
	4.6	Owner,	Property Manager, and Occupant Information	8				
	4.7	Degree	of Obviousness	9				
5.0	RECORDS REVIEW							
	5.1	Federal	ASTM Databases	1				
		5.1.1	Federal RCRIS - Generators 17	1				
	5.2	State AS	STM Databases	2				
		5.2.1	Solid Waste Facilities/ Landfill (SWL) List 12	2				
		5.2.2	State Leaking Tanks (LTANKS) 12	2				
		5.2.3	Leaking Underground Storage Tank (LUST) List	3				
		5.2.4	Registered Underground Storage Tank (UST) List 13	3				
		5.2.5	Aboveground Storage Tank (AST) Database	3				
	5.3	Additior	nal Environmental Record Sources14	4				
		5.3.1	Additional Non-ASTM Federal Databases 14	4				

July 21, 2021

			5.3.1.1 Superfund Enterprise Management System (SEMS) 14					
			5.3.1.2 Formerly Used Defense Sites (FUDS)					
			5.3.1.3 Facility Index System (FINDS) 15					
			5.3.1.4 ECHO 15					
		5.3.2	Additional Non-ASTM State Databases 15					
			5.3.2.1 Manifest Information (MANIFEST) 15					
		5.3.3	Other Proprietary Databases15					
		5.3.4	Unmapped (Orphan) Facilities and Sites 15					
	5.4	Regula	tory Review Summary					
6.0	HISTO	RICAL US	SE INFORMATION					
	6.1	Aerial I	Photograph Review					
	6.2	Sanboi	rn Fire Insurance Map Review 18					
	6.3	Proper	ty Tax Files ۱۹					
	6.4	Record	led Land Title Records 19					
	6.5	Histori	cal USGS Topographic Maps					
	6.6	City Di	rectory Review					
	6.7	Buildin	ng Department Records 21					
	6.8	Zoning	z/Land Use Records					
	6.9	Other Historical Sources						
	6.10	Previous Reports						
	6.11	Histori	cal Use Summary 22					
7.0	SITE AND AREA RECONNAISSANCE 2							
	7.1	Metho	dology 23					
	7.2	On-Site	e Features					
	7.3	Adjoini	ing and Nearby Properties 26					
	7.4	Site an	d Area Reconnaissance Summary 26					
8.0	ADDIT	IONAL S	ERVICES					
9.0	INTER	VIEWS .						
10.0	FINDI	NGS AND	O CONCLUSIONS					
11.0	REFER	ENCES .						

TABLE OF APPENDICES

Appendix I: Figures Appendix II: Correspondence and User Questionnaire Appendix III: Regulatory Records Documentation Appendix IV: Historical Research Documentation Appendix V: Site Photographs Appendix VI: Statement of Qualifications Appendix VII: Acronyms Appendix VIII: Additional Services

1.0 EXECUTIVE SUMMARY

ECS Mid-Atlantic, LLC (ECS) was contracted by Roanoke Regional Airport Commission to perform an ASTM E1527-13, Phase I Environmental Site Assessment (ESA) of the John C Nordt Property located at 1420 Coulter Drive NW in Roanoke, Virginia (i.e. subject property). This Executive Summary is an integral part of the Phase I ESA report. ECS recommends that the report be read in its entirety.

The subject property is identified by the City of Roanoke by parcel identification number as 6630107 and owned by Nordt Properties LLC. The approximate eight-acre subject property is improved with 40,419 square-foot office and manufacturing building and an approximate 5,000 square foot hangar. The subject property is serviced by municipal water and sanitary sewer. The building is heated and cooled with a combination of natural gas and electricity.

Draper Aden Associates previously conducted a Phase I Environmental Site Assessment for the subject property in 2016. The report indicated that the subject property was a jewelry manufacturer, and found several RECs, which are further discussed herein.

The subject property is located in a commercial area of Roanoke, Virginia. The subject property is bound on the north by the Roanoke-Blacksburg Regional Airport, on the east by a Fedex Hanger and Airport Road, on the south by Coulter Drive, followed by an office building, and on the west by commercial properties. ECS did not identify environmental issues at adjoining or nearby properties that are believed to present a recognized environmental condition (REC) at the subject property.

Based on the records search, site reconnaissance and interviews, it appears that the subject property was part of an agricultural tract, with what appears to be a small structure, prior to construction of the current onsite facility, in 1983. Our review of historical information for adjoining or nearby properties identified the area as originally relatively rural and agricultural, that transitioned to a commercial area of Roanoke. Historical records prior to 1890 were not reasonably ascertainable for the subject property.

A regulatory database search report was provided by Environmental Data Resources Inc. (EDR). The database search involves researching a series of Federal, State, Local, and other databases for facilities and properties that are located within specified minimum search distances from the subject property. The report identified the the subject property on several of the researched databases. The EDR report identified several off-site properties within the minimum ASTM search distances. Based on our review of available public records, none of the listings are believed to represent a REC for the subject property, with the exception of those further discussed below.

ASTM E1527-13 defines a "data gap" as: "a lack of or inability to obtain information required by this practice despite good faith efforts by the environmental professional to gather such information." Data gaps which would be expected to impact our ability to render a professional opinion concerning the subject property were not identified.

We have performed a Phase I Environmental Site Assessment in general conformance with the scope and limitations of ASTM E1527-13 of the John C Nordt Property located at 1420 Coulter Drive NW, in Roanoke, Virginia. Exceptions to, or deletions from, this practice are described in Section 2.6 of this report. This assessment has revealed no evidence of recognized environmental conditions in connection with the property except for the following:

- The subject property has been utilized as a jewelry manufacturing facility since the 1980's, which has included the use of hazardous chemicals and heavy metals.
- The subject property contains a 4,000 gallon diesel UST that was reportedly installed in 1984 and then updated with new lines and ancillary equipment in 1998 to bring the system up to code. This UST is utilized to store fuel for the facility's back-up generator. More recently, ECS understands that the UST was equipped with a new tank gauge and leak detection system, making it current with new regulations.
 - While no releases have been reported at the subject property, the long term use as a jewelry manufacturer and the long term use of an UST leads to the potential for undocumented or incidental releases, which is considered to be a REC.

2.0 INTRODUCTION

2.1 Purpose and Reason for Performing Phase I ESA

The purpose of the ESA was to:

- evaluate the probability of impact to the surface water, groundwater and/or soils within the property boundaries through a review of regulatory information and a reconnaissance of the subject property and vicinity;
- evaluate historical land usage to identify previous conditions that could potentially impact the environmental condition of the subject property;
- conduct all appropriate inquiry as defined by ASTM E1527-13 and 40 CFR Part 312;
- evaluate the potential for on-site and off-site contamination; and,
- provide a professional opinion regarding the potential for environmental impact at the site and a list of Recognized Environmental Conditions (RECs).

The ESA should allow the Users the opportunity to qualify for landowner liability protection under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) provided certain stipulations are met. The landowner liability protections are: an innocent landowner, a contiguous property owner, or a bona fide prospective purchaser. The User must meet the protection stipulations detailed in CERCLA to qualify as well as meet the User Obligations contained within the ASTM E1527- 13 standard.

The reason for conducting this ESA is to perform all appropriate inquiries into the uses and prior ownership of the subject property for a pending real estate transaction.

2.2 Scope of Services

The environmental assessment was conducted in general accordance with ASTM E1527-13 and EPA Standards and Practices for All Appropriate Inquiry (40 CFR §312.10). The environmental assessment was conducted under the supervision or responsible charge of an individual that qualifies as an environmental professional, as defined in 40 CFR §312.10.

ECS was contracted by Roanoke Regional Airport Commission to perform an ASTM E1527-13, Phase I Environmental Site Assessment (ESA) of the John C Nordt Property located at 1420 Coulter Drive NW in Roanoke, Virginia. ECS was not contracted to address non-scope considerations.

2.3 Definitions

ASTM E1527-13 defines a "recognized environmental condition (REC)" as "the presence or likely presence of any hazardous substances or petroleum products in, on or at a property: 1) due to release to the environment, 2) under conditions indicative of a release to the environment; or 3) under conditions that pose a material threat of a future release to the environment." For the purposes of this practice, "migrate" and "migration" refer to the movement of hazardous substances or petroleum products in any form including solid and liquid at the surface or subsurface and vapor in the subsurface.

ASTM E1527-13 defines a "business environmental risk" (BER) as "a risk which can have a material environmental or environmentally-driven impact on the business associated with the current or planned use of a parcel of commercial real estate, not necessarily limited to those environmental issues required to be investigated in this practice". ECS also uses the term "Other Environmental Considerations" to discuss BERs and environmental concerns outside of the ASTM E1527-13 requirements (radon, asbestos, lead, wetlands, etc.). Client-imposed limitations and site condition limitations, if encountered, are detailed in Section 2.6 Limiting Conditions/Deviations.

ASTM E1527-13 defines a "*de minimis* condition" as a condition that generally does not represent a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. De minimis conditions are not recognized environmental conditions nor controlled recognized environmental conditions.

ASTM E1527-13 defines a "controlled recognized environmental condition (CREC)" as a recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (for example property use restrictions, activity and use limitations, institutional controls, or engineering controls). A condition identified as a controlled recognized environmental condition does not imply that the Environmental Professional has evaluated or confirmed the adequacy, implementation or continued effectiveness of the required control that has been, or is intended to be, implemented.

ASTM E1527-13 defines a "historical recognized environmental condition (HREC)" as a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted residential use criteria established by a regulatory authority, without subjecting the property to any required controls (for example property use restrictions, activity and use limitations, institutional controls, or engineering controls). Before calling the past release a historical recognized environmental condition, the Environmental Professional must determine whether the past release is a recognized environmental condition at the time the Phase I Environmental Site Assessment is conducted (for example, if there has been a change in the regulatory criteria).

2.4 Limitations

The ESA involved a reconnaissance of the subject property and contiguous properties and a review of regulatory and historical information in general accordance with the ASTM standard and EPA regulation referenced herein. No non-scope considerations or additional issues such as asbestos, radon, wetlands or mold were investigated, unless otherwise described in Section 8.0 of this report.

Note: vapor migration in the subsurface is described in Guide E2600 published by ASTM. ECS has not conducted a Vapor Encroachment Screen in accordance with the E2600 guide.

The conclusions and/or recommendations presented within this report are based upon a level of investigation consistent with the standard of care and skill exercised by members of the same profession currently practicing in the same locality under similar conditions. The intent of this assessment is to identify the potential for recognized environmental conditions in connection with the subject property; however, no environmental site assessment can completely eliminate uncertainty regarding the potential for recognized environmental conditions in connection with the subject property. The findings of this ESA are not intended to serve as an audit for health and safety compliance issues pertaining to improvements or activities at the subject property. ECS is not liable for the discovery or elimination of hazards that may potentially cause damage, accidents or injury.

Observations, conclusions and/or recommendations pertaining to environmental conditions at the subject property are necessarily limited to conditions observed, and or materials reviewed at the time this study was undertaken. It was not the purpose of this study to determine the actual presence, degree or extent of contamination, if any, at this subject property. This could require additional exploratory work, including sampling and laboratory analysis. No warranty, expressed or implied, is made with regard to the conclusions and/or recommendations presented within this report.

This report is provided for the exclusive use of Roanoke Regional Airport Commission. This report is not intended to be used or relied upon in connection with other projects or by other unidentified third parties. The use of this report by any undesignated third party or parties will be at such party's sole risk and ECS disclaims liability for any such third party use or reliance. The use of this report is subject to the same terms, conditions and scope of work reflected in this report and the associated proposal.

2.5 Data Gaps

Data failures (historical data gaps) were identified during the historical research of this subject property. Use of the subject property was generally documented back to 1890. Historical information was missing for various periods. However, due to the apparent historical use, the present use, and the other information that was obtained about the subject property the historical data gaps are not expected to impact our ability to render a professional opinion regarding the subject property.

2.6 Limiting Conditions/Deviations

ASTM E1527-13 requires that the Environmental Professional identify limiting conditions, deletions, and deviations from the ASTM E1527-13 standard, if any, including client-imposed constraints. The following limiting conditions and/or deviations were encountered during the performance of this Phase I ESA:

Areas of dense vegetation covered northern portions of the subject property and may have obscured environmentally significant features and direct observation of the ground surface. In addition, ECS did not view all office spaces or the vault within the subject building; however, this limiting condition is not expected to impact our ability to provide a professional opinion concerning the subject property.

3.0 SUBJECT PROPERTY DESCRIPTION

3.1 Subject Property Location and Legal Description

Site Name	John C Nordt Property
Property Address	1420 Coulter Drive NW
Property City, State	Roanoke, Virginia
Property County	City of Roanoke
Number of Parcels	One
Property ID Number(s)	6630107
Property Size	eight Acres
Property Owner of Record	Nordt Properties LLC
Property Legal Description	According to the City of Roanoke Property: TRACT III BARRENS

3.2 Physical Setting and Hydrogeology

USGS Topographic Map			
Quad Designation	Roanoke, Virginia		
Date	2013		
Su	bject Property Settings		
Average SubjectApproximately 1,160 feet above mean sea levelProperty Elevation (in feet or meters)Approximately 1,160 feet above mean sea level			
General Sloping Direction	Relatively flat		
Bodies of Water	None		
General Directions of Surface Flow	Curb and gutter to underground conveyances		
Presumed Direction of Groundwater Flow	North, Northeast		
Geologic Province	Valley and Ridge		
Up-gradient Property Direction	South, Southwest		

Nearby Properties' Setting			
General Sloping Direction Relatively flat			
Bodies of Water	No notable surface water features mapped or observed within 500 feet of the subject property.		
General Directions of Surface Flow	Curb and gutter to underground conveyances		
Presumed Direction of Groundwater Flow	Northeast		

Regional influences such as changes in soil and geologic conditions, and local topography, may have an impact on groundwater flow. The actual groundwater flow direction cannot be determined without site-specific information obtained through the gauging of groundwater monitoring wells.

3.3 Current Use and Description of the Site

The subject property consists of an approximately eight-acre parcel of land that is currently occupied by John C Nordt, a jewelry manufacturer. Specifically, the facility is a fabricator of specialty metal products with operations that include melting, machining, extruding, drawing, cutting, shaping, mechanical finishing, and electroplating of precious metals. The subject property is improved with a 40,419 square foot office and manufacturing facility, and an approximate 5,000 square foot former hangar, that is primarily utilized for storage. The subject property is located in an area that can generally be described as commercial.

4.0 USER PROVIDED INFORMATION

The ASTM standard includes disclosure and obligations of the User to help the Environmental Professional identify the potential for Recognized Environmental Conditions associated with the subject property. The ASTM E1527-13 User Questionnaire was submitted to and completed by Danielle Poe, representing Roanoke Regional Airport Commission (User of the report). Section 4.0 is based on the completed User Questionnaire. A copy of the completed User Questionnaire is included in Appendix II.

4.1 Title Information

ECS was not provided with title information by the User. If this information is provided following the issuance of this report and information contained therein materially changes the outcome of this report, ECS will issue an addendum to this report.

4.2 Environmental Liens or Activity and Use Limitations

ECS was neither contracted to obtain information on environmental liens or activity and use limitations, nor have we been provided with information on environmental liens or activity and use limitations for our review. It should be noted by the User of this report that if the User does not obtain activity and use limitation information, the User that is seeking to qualify for an innocent landowner, a contiguous property owner, or a bona fide prospective purchaser liability defense may lose these rights to qualify under CERCLA. If the activity use information is provided following issuance of this report and information contained therein materially changes the outcome of this report, ECS will issue an addendum to this report.

4.3 Specialized Knowledge

The User indicated that adjoining properties have been used for airport operations.

4.4 Commonly Known or Reasonably Ascertainable Information

The User indicated that the tenant has been involved in the metals business.

4.5 Valuation Reduction for Environmental Issues

According to the User, the purchase price being paid for the subject property reasonably reflects its fair market value, according to a 2021 appraisal.

4.6 Owner, Property Manager, and Occupant Information

The User indicated that the property is owned by Nordt Properties LLC, and that property is managed by Poe and Cronk real estate.

4.7 Degree of Obviousness

The User stated that they were not aware of obvious indicators that point to the presence or likely presence of contamination at the subject property; however, they have not been able to access the subject property.

5.0 RECORDS REVIEW

A regulatory records search of ASTM standard and supplemental databases was conducted for the subject property and is included in Appendix III. The regulatory search report in the appendix includes additional details about the regulatory databases that were reviewed. The regulatory records search involves searching a series of databases for facilities that are located within a specified distance from the subject property. The ASTM standard specifies an approximate minimum search distance from the subject property for each database. Pursuant to ASTM, the approximate minimum search distance may be reduced for each standard environmental record except for Federal NPL site list, and Federal RCRA TSD list. According to ASTM, government information obtained from nongovernmental sources may be considered current if the source updates the information at least every 90 days or, for information that is updated less frequently than quarterly by the government agency, within 90 days of the date the government agency makes the information available to the public. The following table indicates the standard environmental record sources and the approximate minimum search distances for each record.

Standard Environmental Record Sources	Approximate Minimum Search Distance Per ASTM (miles)	Subject Property	Off-Site Properties
Federal NPL	1.0	No	0
Federal Delisted NPL	0.5	No	0
Federal CERCLIS	0.5	No	0
Federal CERCLIS NFRAP	0.5	No	0
Federal RCRA CORRACTS	1.0	No	0
Federal RCRA non-CORRACTS TSD	0.5	No	0
Federal RCRA Generators	Subject Site and Adjoining Properties	Yes	3
Federal IC/EC	Subject Site Only	No	N/A
Federal ERNS	Subject Site Only	No	N/A
State and Tribal Hazardous Waste Sites (NPL Equivalent)	1.0	No	0
State and Tribal Hazardous Waste Sites (CERCLIS Equivalent)	0.5	No	0
State and Tribal Landfill and/or solid waste disposal sites	0.5	Yes	1

Standard Environmental Record Sources	Approximate Minimum Search Distance Per ASTM (miles)	Subject Property	Off-Site Properties
State and Tribal Leaking Tanks	0.5	No	7
State and Tribal Registered UST and AST	Subject Site and Adjoining Properties	Yes	2
State and Tribal IC/EC	Subject Site Only	No	N/A
State and Tribal Voluntary Cleanup (VCP)	0.5	No	0
State and Tribal Brownfield Sites	0.5	No	0

Based on our knowledge of the subject property and the surrounding area, ECS attempts to verify and interpret this data. While this attempt at verification is made with due diligence, ECS cannot guarantee the accuracy of the record(s) search beyond that of information provided by the regulatory report(s). ECS makes no warranty regarding the accuracy of the database report information included within the regulatory report(s).

The regulatory database search was performed by EDR and is dated June 24, 2021. ECS did not reduce the minimum ASTM search distances stipulated in the standard. The regulatory databases reviewed by ECS included supplemental databases researched by EDR.

5.1 Federal ASTM Databases

5.1.1 Federal RCRIS - Generators

RCRIS identifies facilities that generate hazardous wastes as defined by the RCRA. Very small quantity generators (VSQG) (previously identified as conditionally exempt small quantity generators or CESQGs) generate less than 100 kilograms of hazardous waste, or less than 1 kilogram of acutely hazardous waste, per month. Small quantity generators (SQGs) generate between 100 and 1,000 kilograms of hazardous waste per month. Large quantity generators (LQGs) generate more than 1,000 kilograms of hazardous waste or more than 1 kilogram of acutely hazardous waste per month.

John C. Nordt Co (EPA ID:VAD988202073) - This facility is located at the subject property. The EDR denotes this facility as a Small Quantity Generator (SQG), indicating that the facility generates more than 100 kilograms, but less than 1,000 kilograms of hazardous waste per month, and does no exceed 6,000 kilograms of storage. This facility appears to have received violations related to record keeping, according to the DEQ files reviewed as part of a FOIA request. It appears that the violations had been resolved based on the documents reviewed. Furthermore, this listing denotes that this facility utilized tetrachloroethylene as a degreaser, along with other glycols and oils, which often poses an environmental concern if released into

the environment. Given the long-term historical usage of this facility, there is a potential for undocumented releases to have impacted the subject property, which is considered to be a REC.

BB&T (EPA ID:VAD982701864) - This facility is located at 1410 Coulter Drive NW, an adjoining property to the west. The EDR denotes this facility as a non-generator, indicating the facility no longer stores or generates hazardous waste. No violations are listed in the EDR report. ECS requested files from the DEQ for this facility; however, no files were received prior to issuance of this report. Nonetheless, considering the non-generator status and lack of reported violations, this listing by itself, it not considered to be a REC.

UPS-VARDE (EPA ID:VA0000385211) - This facility is located at 5820 Airport Road NW, and adjoining property to the east. The EDR denotes this facility as a Very Small Quantity Generator (VSQG) indicating that the facility does not store more than 1,000 kg (2,200 lbs) of hazardous waste or 1 kg (2.2 lbs) of acute hazardous waste on site at any time. No violations were indicated with this listing in the EDR report. Furthermore, this facility appeared to have been in compliance during the most recent DEQ inspection in 2018, according to the DEQ files reviewed as part of a FOIA request. Based on the regulated nature of this facility, and the lack of violations, this listing by itself it not considered to be a REC.

Several additional RCRA facilities are identified on the EDR database but were verified to be outside the ASTM search distance of the subject site and adjoining properties. Based on distance and/or topographic position relative to the site, as well as the use of the public water supply, these facilities are not expected to impact the subject property. Additional information pertaining to these listings can be viewed in the regulatory report included in Appendix III.

5.2 State ASTM Databases

5.2.1 Solid Waste Facilities/ Landfill (SWL) List

The SWL is a list of state-permitted solid waste facilities. These facilities may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

John C. Nordt Company Inc. (Permit Number: PBR503) - This facility is located at the subject property. This listing relates to the use of an onsite incinerator, which is designed to burn filters which are utilized during waste water and oil recycling/filtration. Any precious metals are then extracted from the ash from the incinerator. This facility is further discussed in section 5.1.1.

5.2.2 State Leaking Tanks (LTANKS)

The LTANKS database is a list of all reported leaking underground and above ground tanks recorded by the state. Duplicate entries pertaining to LTANKS incidents are discussed in the following LUST section.

5.2.3 Leaking Underground Storage Tank (LUST) List

The LUST list is a record of reported leaking underground storage tank incidents. The LUST list may also identify properties that have had soil and/or groundwater contamination associated with documented releases from aboveground storage tanks, surface spills, and other sources.

The EDR report lists seven LUST facilities within the search radius for the database. These facilities are located greater than 1,000 feet from the subject property. Based on the distance from the subject property, ECS does not consider these listings to be RECs for the subject property. Additional information pertaining to these listings can be viewed in the regulatory report included in Appendix III.

5.2.4 Registered Underground Storage Tank (UST) List

The Registered UST List inventories underground storage tanks registered with the state. This list does not identify USTs that have not been registered or are exempt, such as home heating oil tanks and other unregulated tanks.

John C. Nordt Company (Facility ID: 2003085) - This facility is located at the subject property. The EDR indicates that this facility contains two inactive USTs which were two 10,000-gallon gasoline tanks that have been removed from the ground, and one active 4,000 gallon diesel tank.

According to the DEQ files reviewed the two 10,000 gallon USTs were removed from the ground in November 1998. The tanks were reportedly in good condition during the removal, and two soil samples were collected beneath each tank, which yielded results of total petroleum hydrocarbons gasoline range organics (TPH-GRO) below laboratory detection limits, as documented in a Closure Report in December 1998 by C.B Huggins & Associates, Inc.

The 4,000 gallon diesel UST was reported installed in 1984, and was updated with new lines and ancillary equipment in 1998 to bring the system up to code. This UST is utilized to store fuel for the facility's back-up generator. More recently, ECS understands that the UST was equipped with a new tank gauge and leak detection system, making it current with new regulations. While no releases have been reported, the long term use of the UST leads to the potential for undocumented or incidental releases and is considered to be a REC.

The EDR report lists one additional UST facility within the search radius for the database. This facility is reportedly located greater than 1,000 feet from the subject property. Based on the distance from the subject property, ECS does not consider this listing to be a REC for the subject property. Additional information pertaining to this listing can be viewed in the regulatory report included in Appendix III.

5.2.5 Aboveground Storage Tank (AST) Database

The AST Database is a list of facilities that have registered ASTs with the state regulator.

National Car Rental (Facility ID: 2041747) - This facility is located at 1411 Coulter Drive NW, an adjoining property to the south, and topographically cross-gradient relative to the subject property. According to the EDR, this facility has one active 5,000 gallon gasoline AST, with no reported violations. The AST appears to be approximately 270 feet from the subject property boundary. Considering the distance of the tank relative to the subject property, it is not expected that a release would likely impact the subject property; therefore, this facility is not considered to be a REC.

The EDR report lists one additional AST facility within the search radius for the database. This facility is reportedly located greater than 1,000 feet from the subject property. Based on the distance from the subject property, ECS does not consider this listing to be a REC for the subject property. Additional information pertaining to this listing can be viewed in the regulatory report included in Appendix III.

5.3 Additional Environmental Record Sources

5.3.1 Additional Non-ASTM Federal Databases

5.3.1.1 Superfund Enterprise Management System (SEMS)

SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly known as CERCLIS, renamed to SEMS by the EPA in 2015. It contains sites that are either proposed to be or are on the National Priorities List (NPL) as well as sites that are in the screening and assessment phase for possible inclusion on the NPL.

The EDR report lists one SEMS facility within the search radius for the database. This facility is reportedly located greater than 1,000 feet from the subject property. Based on the distance from the subject property, ECS does not consider this listing to be a REC for the subject property. Additional information pertaining to this listing can be viewed in the regulatory report included in Appendix III.

5.3.1.2 Formerly Used Defense Sites (FUDS)

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

The EDR report lists one FUDS facility within the search radius for the database. This facility is reportedly located greater than 1,000 feet from the subject property. Based on the distance from the subject property, ECS does not consider this listing to be a REC for the subject property. Additional information pertaining to this listing can be viewed in the regulatory report included in Appendix III.

5.3.1.3 Facility Index System (FINDS)

Facility Index System (FINDS) contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), Integrated Compliance Information System (ICIS), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

The subject property was listed as John C. Nordt Company on the FINDS database. Refer to the RCRA section above for additional information.

5.3.1.4 ECHO

ECHO provides fast, integrated searches of EPA and state data for more than 800,000 regulated facilities. ECHO focuses on inspection, violation, and enforcement data for the Clean Air Act (CAA), Clean Water Act (CWA) and Resource Conservation and Recovery Act (RCRA) and also includes Safe Drinking Water Act (SDWA) and Toxics Release Inventory (TRI) data.

The subject property was listed as John C. Nordt Company on the ECHO database. Refer to the RCRA section above for additional information.

5.3.2 Additional Non-ASTM State Databases

5.3.2.1 Manifest Information (MANIFEST)

The Manifest database contains information pertaining to hazardous waste manifest listings.

ETS Analytical (EPA ID:VAD988200333) - This facility is located at 1401 Municipal Road, approximately 800 feet south of the subject property. This listing is typically related to waste handling and transportation. Considering the distance relative to the subject property, this listing by itself is not considered to be a REC for the subject property.

5.3.3 Other Proprietary Databases

5.3.4 Unmapped (Orphan) Facilities and Sites

One property was identified on the Orphan Summary List. These facilities are considered as unmappable because the facility information in the database is insufficient and does not report accurate facility location. Based on available address and location information, ECS did not identify these facilities within the vicinity of the subject property.

5.4 Regulatory Review Summary

A regulatory database search report was provided by EDR. The database search involves researching a series of Federal, State, Local, and other databases for facilities and properties that are located within specified minimum search distances from the subject property. The report identified the subject property on several of the researched databases. The EDR report identified several off-site properties within the minimum ASTM search distances. Based on our review of available public records, ECS does not consider the off-site listings to be potential sources of soil, groundwater, or vapor impact to the subject property. However, ECS does consider the current and historical use of the subject property as a jewelry manufacturer, and a current onsite UST system to be RECs.

6.0 HISTORICAL USE INFORMATION

6.1 Aerial Photograph Review

ECS reviewed aerial photographs of the subject property and immediately surrounding properties for evidence of former usage which may indicate potential environmental issues. The aerial photographs were obtained from EDR. The aerial photographs reviewed were dated 1956, 1960, 1968, 1972, 1977, 1982, 1988, 1995, 2000, 2006, 2009, 2012, and 2016. Aerial photographs dated prior to 1956 were not available for review from EDR. The ECS review is dependent on the quality and scale of the photographs. The following is a description of relevant information from the aerial photographs:

Year(s)	Subject Property	Adjoining Properties	REC? (yes or no)
1956	A small residential structure may be present on the eastern portion of the subject property, although given the scale and quality of the imagery, specific details cannot be discerned. The remainder of the property appears to be undeveloped agricultural and/or pastoral land.	North - Undeveloped agricultural and/or pastoral land East - Road followed by undeveloped agricultural and/or pastoral land South - Residential-type improvement followed by Undeveloped agricultural and/ or pastoral land West - Undeveloped land followed by the airport	No
1960-1977	The subject property appears relatively similar to the previous imagery. The presence of an onsite structure can not yet be discerned, given the quality and scale of the imagery.	North - Airport landing strip East - Road followed by undeveloped agricultural and/or pastoral land South - Residential-type improvement followed by Undeveloped agricultural and/ or pastoral land West - Undeveloped land followed by the airport	No
1982	The subject property is improved with a small residential-type structure on the eastern portion of the site, while the remainder of the property is predominantly open grass land.	North - Airport runway East - Forested tract followed by a road (current Airport Road) and open undeveloped land South - Road (current Coulter Drive NW) followed by a commercial-type structure West - Commercial type structure	No

Year(s)	Subject Property	Adjoining Properties	REC? (yes or no)
1988	The subject property now appears to be improved with a large commercial/industrial type structure with an associated asphalt parking lot, and a small outbuilding on the southern half of the site. The northern portion of the site appears to be forested.	Adjoining properties appear relatively similar to the previous imagery.	No
1995	The subject property appears similar to the previous imagery.	North - Airport runway East - Cleared tract followed by Airport Road and commercial developments South - Coulter Drive NW followed by a commercial-type structure West - Commercial type structure	No
2000-2016	The subject property appears similar to the previous imagery and current site conditions.	North - Airport runway East - Commercial-type structures followed by Airport Road and commercial developments South - Coulter Drive NW followed by a commercial-type structure West - Commercial type structure	No

6.2 Sanborn Fire Insurance Map Review

In an effort to identify past uses, ECS utilized EDR to search for historical Sanborn Fire Insurance Maps (Sanborn) for the subject property and surrounding area. Sanborn maps were not available for this area. The absence of such maps generally indicates that the subject property is located in an area where Sanborn maps were not produced because the area was rural or it was not economically feasible. ECS does not expect the lack of Sanborn maps to impact our ability to render a professional opinion concerning the subject property given the amount of historical information obtained from our research, the USGS topographic map, aerial photographs, city directories, and other historical records obtained. A copy of the Unmapped Property report is included within Appendix IV.

6.3 Property Tax Files

Property tax files may include records of past ownership, appraisals, maps, sketches, photos, or other information kept by the local jurisdiction for property tax assessment purposes. According to the City of Roanoke tax assessor online information, the subject property is owned by Nordt Properties LLC. The subject property is listed as an eight-acre parcel with an identification number of 6630107. Additionally, the on-site building is reported as being constructed in 1983 and contains 40,419 square feet of space.

6.4 Recorded Land Title Records

Recorded land title records may include leases, land contracts, and AULs recorded by the local jurisdiction. Land title records may provide only a list of the names of previous owners and may be of limited use; however, they may provide useful information about uses or occupancy of the property when employed in combination with other sources.

ECS was not provided with Land Title Records.

6.5 Historical USGS Topographic Maps

Topographic maps are produced by the United States Geological Survey (USGS) for various time periods. ECS reviewed topographic maps of the subject property and immediately surrounding properties for evidence of former usage which may indicate potential environmental issues. The topographic maps were obtained from EDR and were dated 1890, 1891, 1929, 1933, 1962, 1963, 1968, 1978, 1984, and 2013. Topographic maps dated prior to 1890 were not available for review from EDR. The following is a description of relevant information from the topographic maps:

Year(s)	Subject Property	Adjoining Properties	REC? (yes or no)
1890-1891	The subject property appears to be undeveloped.	Adjoining and nearby properties appear to be undeveloped.	No
1929-1933	A small structure is depicted on the eastern portion of the subject property.	North - Undeveloped land East - Road (current Airport Road) followed by undeveloped land South - Road (Coulter Drive) followed by a small structure West - Undeveloped land	No

Year(s)	Subject Property	Adjoining Properties	REC? (yes or no)
1962-1978	The subject property appears relatively similar to the previous map.	North - Roanoke Municipal Airport East - Airport Road followed by undeveloped land South - Coulter Drive followed by a small structure West - Roanoke Municipal Airport	No
1984	The subject property appears similar to the previous maps; being improved with a small structure along the eastern portion of the site	North - Roanoke Municipal Airport East - Airport Road followed by undeveloped land South - Coulter Drive followed by what appears to be some small (residential-type) and larger (commercial-type) structures West - Several buildings, which appear to be associated with the Roanoke Municipal Airport	No
2013	Generally, structures are not depicted on this topographic map, only roads and other cultural features and landmarks.	Generally, structures are not depicted on this year topographic map, only roads and other cultural features and landmarks.	No

6.6 City Directory Review

One of the ASTM standard historical sources to be reviewed for previous subject property uses is local street directories, commonly known as City Directories. The purpose of the directory review is to identify past occupants of the subject property, adjoining properties, or nearby properties. In some rural areas, street directories information is limited.

ECS reviewed city directories obtained from EDR. The subject property address utilized for the research was 1420 Coulter Drive NW. The directories reviewed were dated 1964, 1969, 1974, 1979, 1984, 1989, 1992, 1995, 2000, 2005, 2010, 2014, and 2017. Directories dated prior to 1964 were not available for review from EDR. A copy of the city directory report is included in Appendix IV. The following is a description of relevant information from the city directories:

Year(s)	Listed Occupants	REC? (yes or no)			
	Subject Property				
1989-2017	John C Nordt Company, Jewelry Manufacturer	No			
	Northern Adjoining Properties				
	Roanoke-Blacksburg Regional Airport Property				
	Eastern Adjoining Properties				
1979-2017	New Life Pentecostal Church (with some other names over the years)	No			
	Southern Adjoining Properties				
1979-1995	La Maison Du Gourmet	No			
2000	Lone Wolf Catering	No			
2005	Aircraft Inventory Corp.	No			
2014-2017	Branch and Associates	No			
	Western Adjoining Properties				
1989	First Virginia Bank (Operations Center)	No			
2005	First Virginia Bank	No			

6.7 Building Department Records

The term building department records means those records of the local government indicating permissions of the local government to construct, alter or demolish improvements on the property.

ECS reviewed the Building Department Records provided by EDR. Permits appear to have consisted of a roof replacement and other general remodeling activities. The other permits for the surrounding area were reported as general construction including; plumbing upgrades and repairs, electrical system upgrades, structure demolitions, and roof replacements. Environmental concerns were not identified in the permits reviewed.

6.8 Zoning/Land Use Records

The term zoning/land use records refers to records of the local government indicating the uses permitted by the government in particular zones within its jurisdictions. ECS reviewed zoning/land use records obtained from the City of Roanoke. The subject property is currently zoned AD; airport development.

6.9 Other Historical Sources

Other credible historical sources may be reviewed to identify past uses of the subject property. These sources may include websites, county or state road maps, historical society documents, or local library information.

FOIA requests were not submitted to the Fire Department or the Health Department due to the additional fees charged by each department and are therefore not considered reasonably ascertainable at the time of this assessment. Given historical information gained from other sources reviewed in this section, this is not considered to be a significant data gap that would affect our ability to render a professional opinion concerning the property's environmental quality.

6.10 Previous Reports

Draper Aden Associates previously conducted a Phase I Environmental Site Assessment for the subject property in 2016. The report indicated that the subject property was a jewelry manufacturer. ECS cannot attest to the accuracy of the information reviewed. The RECs including the following:

- The historical use of the subject property, with continuous storage, use and handling, and disposal of hazardous materials and petroleum products related to manufacturing operations since approximately 1983 as well as former aircraft operations.
- An AEP-owned unused pad-mounted transformer remains on site.
- Current and former commercial/industrial uses of off-site properties, some with LUST cases, located in close proximity and topographically cross-gradient or upgradient with respect to the subject property or potentially cross-gradient or upgradient with respect to groundwater flow.

6.11 Historical Use Summary

According to historical research, the subject property was part of an agricultural tract, with what appears to be a small structure, prior to construction of the current onsite facility, in 1983. Generally, the area has transitioned from a relatively rural and agricultural area to a commercial and industrial area of Roanoke.

No obvious indications of RECs were identified in the historical data review.

7.0 SITE AND AREA RECONNAISSANCE

7.1 Methodology

Steven Hay of ECS conducted the field reconnaissance on July 15, 2021. The weather at the time of the reconnaissance was 90 degrees Fahrenheit and clear. Observations were made from a walking reconnaissance around the perimeter, around the buildings, through the buildings and along several transects across the subject property. Access or visibility limitations, if any, are discussed in Section 2.6. Subject property photographs are included in Appendix V.

7.2 On-Site Features

The subject property is occupied by John C. Nordt, a fabricator of specialty metal products with operations that include melting, machining, extruding, drawing, cutting, shaping, mechanical finishing, and electroplating of precious metals (e.g., gold, silver, and platinum) and may be alloyed with base metals (e.g., copper, nickel, zinc, and ruthenium). The facility operates an incinerator, evaporator, and centrifuge in order to recover precious metals from factory-generated waste. Operations include the use, storage and disposal of hazardous chemicals and petroleum products.

The property includes an approximately 40,419 square foot industrial building and an approximately 5,000 square foot hangar building. The original manufacturing building (constructed in 1983) included approximately 31,250 square feet and an approximate 9,150 square foot addition was added around 1999. The one-story hanger building was constructed in approximately 1983. The building includes office space on the upper level and manufacturing spaces on the lower level. A partial basement exists beneath the factory floor that houses the equipment base supports and other operational equipment. The hangar building is currently used for manufacturing and storage; no aircraft are currently housed or maintained on the property.

The manufacturing area appeared clean and clear of miscellaneous debris. De Minims staining was observed throughout typical of manufacturing operations. Equipment and machinery appeared in good working order with no obvious leakage, damage, or corrosion observed (based on limited observation of overall operations and not a specific observation of all equipment on site).

The remainder of the property consisted of an asphalt parking lot and landscaped areas around the buildings, while a forested area and stormwater detention pond are located on the northern portion of the site.

The table below lists pertinent features of interest that were assessed for the subject property. Relevant information regarding pertinent features is discussed further in this section.

Feature	Yes	No
Underground or aboveground storage tanks	~	
Strong, pungent or noxious odors		×
Surface waters		×
Standing pools of liquid likely containing petroleum or hazardous substances		~
Drums or containers of petroleum or hazardous substances greater than five-gallons	~	
Drums or containers of petroleum or hazardous substances less than or equal to five-gallons	~	
Unidentified opened or damaged containers of hazardous substances or petroleum products		~
Known or suspect PCB-containing equipment (excluding light ballasts)	~	
Stains or corrosion to floors, walls or ceilings	~	
Floor drains and sump pumps	~	
Pits, ponds or lagoons		~
Stained soil or pavement		~
Stressed vegetation		~
Solid waste mounds or non-natural fill materials		~
Wastewater discharges into drains, ditches or streams		~
Groundwater wells including potable, monitoring, dry, irrigation, injections and/or abandoned		~
Septic systems or cesspools		~
Elevators		~
Dry cleaning		~
Onsite emergency electrical generators	~	
Specialized industrial equipment (paint booths, bag houses, etc.,) on-site		~
Hydraulic lifts		~
Oil-water separators		×
Compressors on-site	~	
Grease traps		~

Underground or aboveground storage tanks

A vent pipe and man-hole cover were observed along the western side of the subject building, which is associated with a 4,000 gallon fiberglass UST utilized for storing diesel fuel for a back-up generator, located within the building.

Vent pipes and terminated lines were observed on either side of the hangar building, in the areas of the removed gasoline tanks.

All three tanks are discussed in greater detail in section 5.2.4. No evidence of a release or overfilling was observed.

In addition, the site contains an ammonia AST.

Drums or containers of petroleum or hazardous substances greater than five-gallons

Several 55-gallon drums are located within the building, located on spill containment pallets. The drums appear to contain used oil, glycols and other chemicals essential to the manufacturing processes. Environmental Options regularly collects waste from the site. Staining was not observed on the drums or the floor surfaces in the vicinity of the drums.

Drums or containers of petroleum or hazardous substances less than or equal to five-gallons

Several containers of chemicals were observed in the subject building. Staining was not observed on the containers or the floor surfaces in the vicinity of the containers.

Known or suspect PCB-containing equipment (excluding light ballasts)

A pad-mounted transformer is located along the western side of the subject building. The transformer is owned and maintained by AEP. Staining, which could be indicative of leakage, was not observed on the transformer or surfaces in the vicinity of the transformer.

Stains or corrosion to floors, walls or ceilings

De Minims staining was observed throughout typical of manufacturing operations

Floor drains and sump pumps

A few floor drains were observed that reportedly lead to a wet recovery system along with drains from sinks, rinse areas, and a floor sump located in the basement. The remaining drains and sinks primarily associated with restrooms and employee areas discharge into the sanitary sewer.

Onsite Emergency Electrical Generators

A diesel powered emergency generator was observed in the basement of the subject building. The diesel fuel is stored in a 4,000-gallon UST referenced above. Staining or petroleum odors were not detected in the vicinity of the diesel generator.

Compressors on-site

Several compressors were associated with the facility. The compressors are located within the subject building. No significant staining was observed in the vicinity of the compressors.

7.3 Adjoining and Nearby Properties

Contiguous and nearby properties were observed during a walking and vehicular reconnaissance of the subject property boundary and public places. The subject property is located in a commercial area of Roanoke, Virginia.

Direction	Description	Relative Gradient	REC
North	The subject property is bound to the north by Roanoke-Blacksburg Regional Airport.	Down-gradient	No
East	The subject property is bound to the east by a Fedex Hangar and Airport Road followed by undeveloped land.	Cross-gradient	No
South	The subject property is bound to the south by Coulter Drive followed by an office building (Branch Builds) and National Rental Car.	Up-gradient	No
West	The subject property is bound to the west by a commercial property	Cross-gradient	No

7.4 Site and Area Reconnaissance Summary

According to our observations of the subject and surrounding properties, the subject property is utilized for jewelry manufacturing. Details pertaining to our on-site and off-site observations are referenced previously. The following RECs were identified during our on-site and off-site reconnaissance:

• The long term historical use of the subject property for jewelry manufacturing leads to the potential for undocumented releases to the environment, which is considered to be a REC.

8.0 ADDITIONAL SERVICES

ASTM guidelines identify non-scope issues, which are beyond the scope of this practice. Non-scope issues have the potential to be business environmental risks. Some of these non-scope issues include; asbestos-containing building materials, radon, lead-based paint, lead in drinking water, wetlands, and mold.

The following non-ASTM considerations were assessed in conjunction with this Phase I ESA:

<u>Asbestos</u>

Based on the age of the building on the property (circa 1983), asbestos-containing materials (ACM) were likely to have been utilized in its construction. ECS conducted a brief visual survey of the property and observed the following potentially suspect ACM: flooring and associated mastics, joint compound, window glazing/caulks, and roofing materials.

This cursory visual survey is not considered to be a complete inspection for ACM. ECS recommends that an asbestos survey be performed by a licensed asbestos inspector prior to conducting demolition or renovation activities that could disturb suspect ACM.

Lead Based Paint

Lead-based paint was banned for residential use in 1978, and many commercial uses were phased out after that year. Based on the age of the building(s) on the property (circa 1983), lead-based paint finishes are not likely to have been utilized in its construction or prior renovation. ECS conducted a brief visual survey of the property did not observe any cracked paint finishes, indicative of lead-based paint.

This cursory visual survey is not considered to be a complete inspection for lead-based paint. ECS recommends that a lead paint survey be performed by a licensed lead inspector prior to conduction demolition or renovation activities that could disturb suspect lead painted surfaces.

Lead in Drinking Water

The subject property is serviced by public water supply.

Buildings constructed prior to the 1980s may have lead pipes and/or lead pipe fittings. Based on the date of construction of the building (1983), it is considered unlikely that the subject property has lead-soldered pipe fittings.

ECS has reviewed the most recent available water quality report produced by Western Virginia Water Authority. According to that report, the site is serviced by the Carvins Cove Reservoir & Treatment Facility. Elevated lead levels were not reported in the samples collected.

Consequently, lead in drinking water is not considered to be a BER for the subject site. Additional site-specific testing would be required to ascertain actual lead in drinking water concentrations.

Visual Mold Inspection

ECS personnel conducted a visual assessment in reasonably accessible areas for visual indications of apparent fungal/mold colonization. Our visual assessment does not imply a guarantee that all possible growth reservoirs of fungal growth/mold were identified since destructive testing was not conducted by ECS. Visual indications of apparent fungal growth (mold) and moisture intrusion were not observed during our assessment.

FEMA Flood Map

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map Panels 51161C0153G and 51161C0154G, dated September 28, 2007, the subject property is located in Flood Hazard Zone X, which is an area of minimal flood hazard. A copy of the FEMA Flood Map is included in Appendix I.

<u>Radon</u>

Radon is a naturally occurring gaseous substance resulting from the radioactive decay of uranium to radium and then to radon. Uranium is a common element found in many geologic formations and substrates, particularly igneous and metamorphic rocks. Radon has a half-life of only 3.8 days and decays to its daughter elements which represent the health hazard commonly associated with radon.

The EPA has established a list that identifies areas of the U.S. with the potential for elevated indoor radon levels. The EPA Map of Radon Zones assigns each county in the U.S. to one of three zones based on radon potential. The EPA Action level for radon is greater than 4 picoCuries per liter (pCi/L). According to information provided on the EPA Map of Radon Zones, City of Roanoke is located in Zone 1, which is predicted to have average screening levels of greater than 4 pCi/L.

Site-specific testing would be needed to assess indoor radon concentrations. No radon testing was conducted during this assessment.

Wetlands and Streams

ECS conducted a review of the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) Online Map and the USGS Topographic Map (Roanoke, Virginia 2013) to obtain information regarding the subject property.

- The U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) Online Map did not indicate surface waters or wetlands are located on or near the site.
- The USGS Topographic Map did not indicate that surface waters, streams, swamps or ponds are noted on the site.

The subject property consists of eight acres of land developed with a 40,419 square foot building with associated asphalt parking. During our reconnaissance, we observed the subject property for evidence of wetlands, streams, open water/ponds, swamps, etc. During our site visit, ECS did not observe potential wetland/stream features.

Threatened and Endangered Species

Virginia Department of Wildlife Resources:

ECS conducted a search of the VDWR Fish and Wildlife Information Service (FWIS) threatened and endangered species database to evaluate documented occurrences of federally and/or state listed species within a two-mile radius of the project site (see Appendix I). According to FWIS, four species are listed as having been documented within this radius:

• Federal and State-endangered Roanoke Logperch (*Percina rex*) - Confirmed sightings within 2 miles of the site. The Roanoke Logperch inhabits medium-to-large sized warm, clear streams and small rivers of moderate to low gradient. Adults usually occupy riffles, runs, and pools containing sand, gravel, or boulders that are free of silt. Young-of-year congregate in mixed-species schools in shallow habitat underlain by sand and gravel along stream margins.

Based on current site conditions, suitable habitats for this species is not present on the site; therefore, no adverse impacts are expected.

U.S. Fish and Wildlife Service (USFWS):

ECS conducted a review of the USFWS Information for Planning and Consultation (IPaC) database to evaluate the documented occurrences or potential habitat for federally-listed species within the project boundaries. According to the IPaC database, no species are listed as having potential to occur at the project site. Additionally, no critical habitats are listed.

9.0 INTERVIEWS

During the site reconnaissance, Steven Hay interviewed Paul Nordt. Mr. Nordt explained that he has been familiar with the property since 1979, that the manufacturing facility was constructed in 1983, and prior to 1979 the property was part of the Coulter Farm. Mr. Nordt also explained that there have been three USTs onsite, two of which have been removed, while the third tank stores diesel for the back-up generator. Mr. Nordt also stated that there was a Phase I ESA conducted on the subject site in 2016, which has been discussed previously. Finally, Mr. Nordt indicated that he is not aware of 1) environmental concerns associated with the subject property; 2) any pending, past, or threatened administrative litigation or administrative proceedings relevant to hazardous substances or petroleum products in, on, or from the subject property; or 3) any government notices regarding any possible violation of environmental laws or possible liability related to hazardous substances or petroleum products.

10.0 FINDINGS AND CONCLUSIONS

The subject property is identified by the City of Roanoke by parcel identification number as 6630107 and owned by Nordt Properties LLC. The approximate eight-acre subject property is improved with 40,419 square-foot office and manufacturing building and an approximate 5,000 square foot hangar. The subject property is serviced by municipal water and sanitary sewer. The building is heated and cooled with a combination of natural gas and electricity.

Draper Aden Associates previously conducted a Phase I Environmental Site Assessment for the subject property in 2016. The report indicated that the subject property was a jewelry manufacturer, and found several RECs, which are further discussed herein.

The subject property is located in a commercial area of Roanoke, Virginia. The subject property is bound on the north by the Roanoke-Blacksburg Regional Airport, on the east by a Fedex Hanger and Airport Road, on the south by Coulter Drive, followed by an office building, and on the west by commercial properties. ECS did not identify environmental issues at adjoining or nearby properties that are believed to present a recognized environmental condition (REC) at the subject property.

Based on the records search, site reconnaissance and interviews, it appears that the subject property was part of an agricultural tract, with what appears to be a small structure, prior to construction of the current onsite facility, in 1983. Our review of historical information for adjoining or nearby properties identified the area as originally relatively rural and agricultural, that transitioned to a commercial area of Roanoke. Historical records prior to 1890 were not reasonably ascertainable for the subject property.

A regulatory database search report was provided by EDR. The database search involves researching a series of Federal, State, Local, and other databases for facilities and properties that are located within specified minimum search distances from the subject property. The report identified the the subject property on several of the researched databases. The EDR report identified several off-site properties within the minimum ASTM search distances. Based on our review of available public records, none of the listings are believed to represent a REC for the subject property, with the exception of those further discussed below.

ASTM E1527-13 defines a "data gap" as: "a lack of or inability to obtain information required by this practice despite good faith efforts by the environmental professional to gather such information." Data gaps which would be expected to impact our ability to render a professional opinion concerning the subject property were not identified.

We have performed a Phase I Environmental Site Assessment in general conformance with the scope and limitations of ASTM E1527-13 of the John C Nordt Property located at 1420 Coulter Drive NW, in Roanoke, Virginia. Exceptions to, or deletions from, this practice are described in Section 2.6 of this report. This assessment has revealed no evidence of recognized environmental conditions in connection with the property except for the following:

• The subject property has been utilized as a jewelry manufacturing facility since the 1980's, which has included the use of hazardous chemicals and heavy metals.

- The subject property contains a 4,000 gallon diesel UST that was reportedly installed in 1984 and then updated with new lines and ancillary equipment in 1998 to bring the system up to code. This UST is utilized to store fuel for the facility's back-up generator. More recently, ECS understands that the UST was equipped with a new tank gauge and leak detection system, making it current with new regulations.
 - While no releases have been reported at the subject property, the long term use as a jewelry manufacturer and the long term use of an UST leads to the potential for undocumented or incidental releases, which is considered to be a REC.

11.0 REFERENCES

ASTM E1527-13. Standard Practice for Environmental Site Assessment, Phase I Environmental Site Assessment Process.

Environmental Data Resources, Inc., The EDR Aerial Photo Decade Package (years 1956, 1960, 1968, 1972, 1977, 1982, 1988, 1995, 2000, 2006, 2009, 2012, and 2016), dated June 25, 2021.

Environmental Data Resources, Inc., The EDR Radius Map Report, dated June 24, 2021.

Environmental Data Resources, Inc., Certified Sanborn Map Report (unmapped), dated June 24, 2021.

City of Roanoke County GIS website, accessed on June 24, 2021.

USGS Topographic Map, Roanoke, Virginia, dated 2013.

Environmental Data Resources, Inc., EDR City Directory Image Report, dated June 29, 2021.

Environmental Data Resources, Inc., Historical Topo Map Report, dated June 24, 2021.

SUBSURFACE ASSESSMENT

JOHN C NORDT PROPERTY

1420 COULTER DRIVE NW ROANOKE, VIRGINIA 24012

ECS PROJECT NO. 47:12509-A

FOR: ROANOKE REGIONAL AIRPORT COMMISSION

OCTOBER 15, 2021

"Setting the Standard for Service"

October 15, 2021

Ms. Danielle Poe **Roanoke Regional Airport Commission** 5202 Aviation Drive Roanoke, Virginia 24012

ECS Project No.: 47:12509-A

Reference: Subsurface Assessment John C Nordt Property 1420 Coulter Drive NW, Roanoke, Virginia 24012

Dear Ms. Poe:

ECS Mid-Atlantic LLC (ECS) is pleased to submit this report discussing a Subsurface Assessment for the referenced site as authorized by your acceptance of our Proposal No. 47:19729-P, dated July 27, 2021. The purpose of our services was to evaluate the site for potential contamination associated with recognized environmental conditions that were identified during a recent Phase I Environmental Site Assessment.

This report is provided for the exclusive use of the Roanoke Regional Airport Commission. This report is not intended to be used or relied upon in connection with other projects or by other unidentified third parties. The use of this report by any undesignated third party or parties will be at such party's sole risk and ECS disclaims liability for any such third-party use or reliance.

We appreciate the opportunity to provide our professional environmental services for this project. If you have questions regarding this report, or if we can be of further service, please contact us.

Respectfully submitted,

ECS MID-ATLANTIC, LLC

Environmental Project Manager

Garnett B. Williams, CPG Principal Geologist

TABLE OF CONTENTS

SECTION		PAGE
1.0 1.1 1.2 1.3	Site Description	1 1 1 1
2.0 2.1 2.2		3 3 3
3.0 3.1 3.2		4 4 4
4.0	CONCLUSIONS AND RECOMMENDATIONS	7
5.0	QUALIFICATIONS	8
APPE	NDIX I – Figures FIGURE 1 Site Location Map FIGURE 2 Boring Location Map FIGURE 3 Vapor Sample Location Map	

APPENDIX II – Laboratory Data Sheets

APPENDIX III – Boring Logs

1.0 INTRODUCTION

1.1 <u>Purpose</u>

The purpose of this Subsurface Assessment is to evaluate the site for potential petroleum contamination associated with an underground storage tank (UST), and the current and historical use of the property as a jewelry manufacturer, which were identified as recognized environmental conditions (RECs) during a recent Phase I Environmental Site Assessment (ESA). These RECs are briefly described below:

- The subject property has been utilized as a jewelry manufacturing facility since the 1980's, which has included the use of hazardous chemicals and heavy metals.
- The subject property contains a 4,000-gallon diesel UST that was reportedly installed in 1984 and then updated with new lines and ancillary equipment in 1998 to bring the system up to code.

Based on the foregoing, ECS proposed to collect soil and groundwater samples to evaluate the potential for contamination from the RECs identified during the Phase I ESA and provide an opinion concerning the potential impact any identified contamination may have on the future use of the subject property.

1.2 <u>Site Description</u>

The subject property is identified by the City of Roanoke as parcel identification number 6630107 and owned by Nordt Properties, LLC (Figure #1). The approximate eight-acre subject property is improved with 40,419 square-foot office and manufacturing building and an approximate 5,000 square foot hangar.

The subject property is serviced by municipal water and sanitary sewer. The building is heated and cooled with a combination of natural gas and electricity.

1.3 <u>Scope of Services</u>

ECS contacted Miss Utility to mark public subsurface utilities at the site prior to drilling. The boring locations were coordinated to avoid underground utilities identified by the line locators.

ECS and JETCO, Inc. then mobilized to the subject site on September 7, 2021 to conduct subsurface exploration. This work involved the advancement of six Geoprobe borings (designated SB-01 through SB-06) to depths ranging from 17 to 25 feet (Figure #2).

The borings were advanced in areas of the subject site where contamination would be expected to be greatest based on the information known to ECS at the time of the assessment. Borings SB-01 and SB-02 were placed around the UST while the remaining borings were placed in relative down-gradient topographic positions. ECS screened soil collected during the completion of the borings for indications of petroleum staining and petroleum/chemical odors and utilized a photoionization detector (PID) to field screen collected soil samples for volatile organic compounds (VOCs) during sample collection. Upon completion of sampling activities, all borings were backfilled to grade soil and bentonite.

In addition, ECS installed four sub-slab soil vapor collection points (designated SVP-01 through SVP-04) in the subject building on August 10, 2021 (Figure #3). The vapor points were installed utilizing hand operated equipment by drilling an approximate ½" diameter hole through the building slab. Teflon tubing was inserted into the space below the slab and sealed at the surface with nontoxic modeling clay to prevent entrainment of air from the building interior. The sampling points were purged with a hand operated pump to remove ambient air within the line. The soil vapor samples were then drawn into 1L Summa canisters by pressure equilibration using regulators calibrated by the laboratory for an approximate 30-minute sampling duration (~50 mL/min. flow rate).

2.0 SITE CONDITIONS

2.1 <u>Geologic and Hydrogeologic Site Information</u>

As determined from the USGS topographical map for the Roanoke, Virginia Quadrangle, the subject site is situated approximately 1,160 feet above mean sea level with topography sloping towards the northeast. Based on a review of the topographic map and observations of the general area and site topography, surface run-off would be expected to flow to the northeast.

The subject site is located within the Valley and Ridge Physiographic Province. The soils encountered in this area are the residual product of in-place chemical weathering of rock presently underlying the site and/or historical depositional events. In general, shallow unconfined groundwater movement within the overlying soils is controlled largely by topographic gradients. However, as the groundwater percolates downward, it becomes controlled by the subsurface geologic conditions. Thus, the direction of groundwater movement in the deeper aquifers may not be consistent with the reflecting topography.

Surface waters primarily recharge shallow aquifers by infiltration along higher elevations. Once in the shallow aquifer, the groundwater typically discharges into streams or other surface water bodies at lower elevations. The depth of the shallow water table is transient and can vary greatly with seasonal fluctuations in precipitation. Groundwater movement in the shallow aquifer is generally from higher to lower elevations. As such, shallow groundwater is expected to flow generally northeast. Based on the presumed groundwater flow direction, properties located to the north appear to be upgradient relative to the site. However, regional influences such as karst conditions, impermeable soils, etc. may have an impact on groundwater flow. The actual groundwater flow direction cannot be determined without site-specific information obtained through the installation and gauging of groundwater monitoring wells.

2.2 Subsurface Conditions

Based on our observation of materials recovered from the borings, soils beneath the site generally consist of a brown to red clay. Geoprobe refusal was encountered on weathered limestone at borings SB-01, SB-03, SB-05 and SB-06. No petroleum staining, odors, elevated PID readings above 0 parts per million (ppm), or free phase product were observed or recorded in the subsurface soils. No groundwater, or evidence of groundwater, was observed in any of the borings.

3.0 LABORATORY RESULTS

3.1 Analytical Methods

Soil and groundwater samples were collected for laboratory analyses, labeled, preserved, and delivered to Pace Analytical Services using standard field and sample collection methodologies. The soil samples from the borings were analyzed for a combination of total petroleum hydrocarbons (TPH) diesel range organics (DRO), Resource Conservation and Recovery Act (RCRA) 8 Metals, and volatile organic compounds (VOCs) via EPA Methods 8015B, 6010 and 8260, respectively. Chain of custody and analyses request forms were submitted with the samples. The soil vapor samples were submitted to Maryland Spectral Laboratories for analyses of VOCs via EPA Method TO-15. Chain of custody and analyses request forms were submitted with the samples.

3.2 Laboratory Analytical Results and Discussion

The analytical results of the soil samples collected from the borings are summarized in Table 1 below. All results were compared to the Virginia Department of Environmental Quality (DEQ) reporting threshold for TPH in soil used in connection with closure of petroleum tanks. This reporting level (100 milligrams per kilogram (mg/kg)) is considered to be a trigger point at which notification is required for UST releases. The laboratory data reports are included in Appendix II.

Analysis	VDEQ Screening Level ¹	Sample Name								
		SB-01	SB-02 SB-03 SB-04 SB-05 SB-0							
	Sample Depth	10-12 ft	10-12 ft							
TPH-DRO	100	BDL	BDL	NA	NA	NA	NA			

Table 1. TPH Soil Sample Results

Notes:

 $^{1}\mbox{VDEQ}$ reporting threshold for TPH in soil encountered in connection with the closure of USTs

All sample results in milligrams per kilogram (mg/kg)

BDL - Below Laboratory Detection Limits; NA - Not analyzed

The results of the soil analysis performed for TPH indicate that concentrations of TPH-DRO are below laboratory detection limits for the two samples, SB-01 and SB-02, which were placed around the UST.

Table 2 summarizes soil data for detections of RCRA-8 Metals above laboratory reporting limits. These data are compared to the DEQ Voluntary Remediation Program (VRP) Tier II and Tier III Screening Levels for residential and industrial properties.

	Tier II	Tier III	Sample Name								
Analyte Residential Soil Screening Level (mg/kg)	Residential Soil Screening	Industrial Screening Level (mg/kg)	SB-01	SB-02	SB-03	SB-04	SB-05	SB-06			
RCRA Metals		Sample Depth			5 ft	5 ft	5 ft	5 ft			
Arsenic	3.50E+00	3.00E+01	NA	NA	<u>15.9</u>	<u>8.7</u>	BDL	<u>35.5</u>			
Barium	1.50E+03	2.20E+04	NA	NA	51.8	69.2	49.8	18.4			
Cadmium	7.10E+00	9.80E+01	NA	NA	0.32	0.24	BDL	0.39			
Chromium	3.60E+06	NSL	NA	NA	52.0	42.1	39.7	30.1			
Lead	2.70E+02	8.00E+02	NA	NA	43.2	26.3	26.0	17.0			
Selenium	5.20E+00	5.80E+02	NA	NA	2.5	1.4	BDL	2.3			
Mercury	1.10E+00	4.60E+00	NA	NA	0.082	0.098	0.093	0.17			

Table 2. Metal Soil Sample Results

Notes:

All sample results in micrograms per kilogram (mg/kg); BDL - Below Laboratory Detection Limits; NSL - No Screening Level

Bold and <u>Underlined</u> values indicate an exceedance of residential screening levels. Highlighted value indicates an exceedance of industrial value

Seven of the eight RCRA-8 metals are reported above quantitation limits. Arsenic exceeds the residential screening value in two locations (SB-03 and SB-04) and industrial screening value in one location (SB-06). None of the remaining metals concentrations exceeded screening levels. Silver was not detected in any of the samples.

Table 3 summarizes soil data for detections of VOCs above laboratory reporting limits, compared to the DEQ Voluntary Remediation Program (VRP) Tier II and Tier III Screening Levels for residential and industrial properties.

Analyte	Tier II Residential	Tier III Industrial	Sample Name									
	Soil Screening Level (mg/kg)	Screening Level (mg/kg)	SB-01	SB-02	SB-03	SB-04	SB-05	SB-06				
		Sample Depth			18 ft	25 ft	15 ft	12 ft				
Methyl-tert-butyl ether	0.63	2100	NA	NA	0.0176	0.0102	BDL	BDL				

Table 3. VOC Soil Sample Results

Notes:

All sample results in milligrams per kilogram (mg/kg); BDL - Below Laboratory Detection Limits; NA - Not analyzed

Based on the data, only one VOC compound was detected; however, the concentration is well below the applicable screening level for both residential and industrial properties.

Lastly, the soil vapor results were compared to VDEQ Tier III screening levels for both residential and commercial/industrial users. Only those VOC compounds reported above detection limits summarized in Table 4 below.

I able 4. Sub-Slab Soil Vapor Results											
A L d -	VDEQ Tier III Residential Subslab	VDEQ Tier III Industrial Subslab		Sample	e Name						
Analyte	Vapor Screening Level	Vapor Screening Level	SVP-1	SVP-2	SVP-3	SVP-4					
Acetone	1.07E+05	4.67E+05	BDL	77.4	26.0	BDL					
Benzene	1.03E+02	4.33E+02	BDL	0.89 J	1.41 J	28.1					
Carbon disulfide	2.43E+03	1.03E+04	8.59	9.84	10.1	12.7					
Chloromethane	3.13E+02	1.30E+03	BDL	1.24 J	BDL	BDL					
Cyclohexane	2.10E+04	8.67E+04	BDL	0.83 J	1.24 J	1.24 J					
Dichlorodifluoromethane	3.33E+02	1.47E+03	19.6	BDL	5.14	BDL					
trans-1,2-Dichloroethene	NSL	NSL	11.3	177	45.8	142					
1,4-Dioxane	1.03E+02	4.33E+02	BDL	BDL	2.16 J	2.59 J					
Ethylbenzene	3.67E+02	1.63E+03	2.26 J	1.56 J	1.74 J	5.73					
n-Heptane	1.40E+03	6.00E+03	3.11 J	3.77	12.0	7.87					
Methyl tert-butyl ether (MTBE)	3.67E+03	1.57E+04	BDL	BDL	BDL	3.32					
Methyl ethyl ketone	1.73E+04	7.33E+04	BDL	3.66	1.65 J	1.89 J					
Styrene	3.33E+03	1.47E+04	0.85 J	BDL	BDL	3.58					
Toluene	1.73E+04	7.33E+04	34.4	14.9	40.2	51.0					
Trichloroethene	7.00E+00	2.93E+01	BDL	BDL	BDL	2.58 J					
Trichlorofluoromethane	NSL	NSL	4.49	1.80 J	2.02 J	3.60 J					
1,2,4-Trimethylbenzene	2.10E+02	8.67E+02	BDL	0.98 J	1.18 J	1.18 J					
o-Xylene	3.33E+02	1.47E+03	1.91 J	2.43 J	1.74 J	1.91 J					
m&p-Xylene	3.33E+02	1.47E+03	8.51	6.78 J	6.43 J	7.47					

Table 4. Sub-Slab Soil Vapor Results

Notes:

All sample results in micrograms per cubic meter ($\mu g/m^3$)

NSL - No Screening Level; BDL - indicates result was below laboratory detection limit

'J' - Indicates an estimated concentration below reporting limits

Based on the foregoing analytical data, combinations of nineteen different VOCs were detected above the laboratory detection limits in the four soil vapor samples collected. The types of compounds detected included common petroleum substances (e.g., benzene, xylenes, toluene, etc.) and chlorinated solvents (Trichloroethene-TCE). The concentrations of the VOCs reported above quantitation limits are below the applicable residential and commercial/industrial screening levels for vapor intrusion for both residential and industrial screening levels.

4.0 CONCLUSIONS AND RECOMMENDATIONS

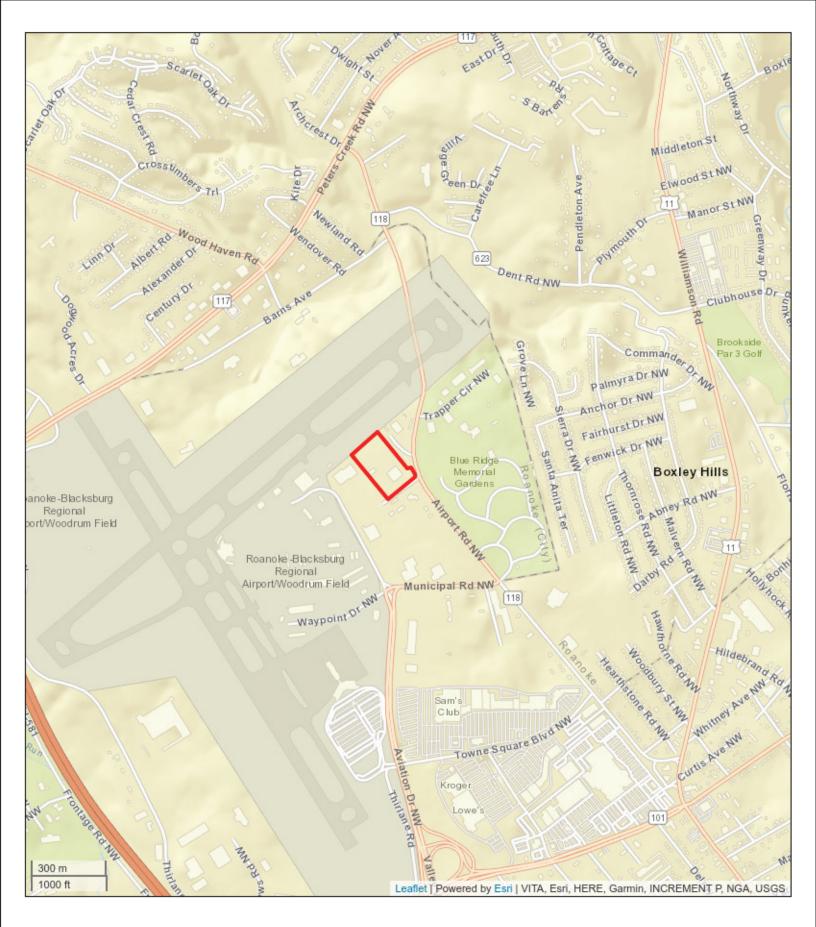
ECS has conducted a Subsurface Assessment for the John C Nordt Property located at 1420 Coulter Drive NW in Roanoke, Virginia. The purpose of the study was to evaluate the site for the potential presence of contamination associated with the historical and current use of the property which has operated as a jewelry manufacturing facility with a UST. These conditions were identified as RECs during a recent Phase I ESA.

ECS advanced six soil borings utilizing a Geoprobe drill rig in areas of the site presumed to be closest to the potential sources of contamination identified with the information provided by the client, and as documented during the previous Phase I ESA. Soil and soil gas samples were collected and analyzed for TPH-DRO, TPH-GRO, RCRA-8 Metals and VOCs.

No petroleum staining, odors, elevated PID readings or free phase product were recorded or observed in the subsurface soils. No groundwater, or evidence of groundwater, was observed in any of the borings.

The analytical results from the borings indicate that TPH-DRO was not detected in the borings surrounding the diesel fuel UST, while only one VOC (Methyl-tert-butyl ether-MTBE) was identified in the soil samples but at a concentration below risk-based screening levels for both residential and industrial properties.

Seven of the eight RCRA-8 metals are reported above quantitation limits. Arsenic exceeds the residential screening value in two locations (SB-03 and SB-04) and industrial screening value in one location (SB-06). The samples were collected at a depth of 4-5 feet in an undisturbed open area of the property and beneath the pavement at SB-03. No fill was apparent at these borings so it is possible that this may be naturally occurring, and no source was identified. Based on preliminary data provided by the DEQ and used for risk-assessment purposes, background concentrations of Arsenic in this geomorphic province can be as high as 22.6 mg/kg. Although the samples exceed risk screening the potential for exposure at this depth is low, so no further action is recommended at this time. None of the remaining metals concentrations exceeded screening levels. Silver was not detected in any of the samples.


A total of nineteen compounds were detected in the sub-slab soil gas samples collected. VOCs were reported at relatively low concentrations and below applicable DEQ screening levels for residential receptors.

Based on the low concentrations of metals and VOCs reported in soil and soil vapor impacts related to the UST and historical/current use of the property do not appear to have significantly impacted the subject site. Moreover, given the commercial use of the site and availability of public water, the risk to human health and the environment is considered to be acceptably low so no further investigation or corrective action is recommended.

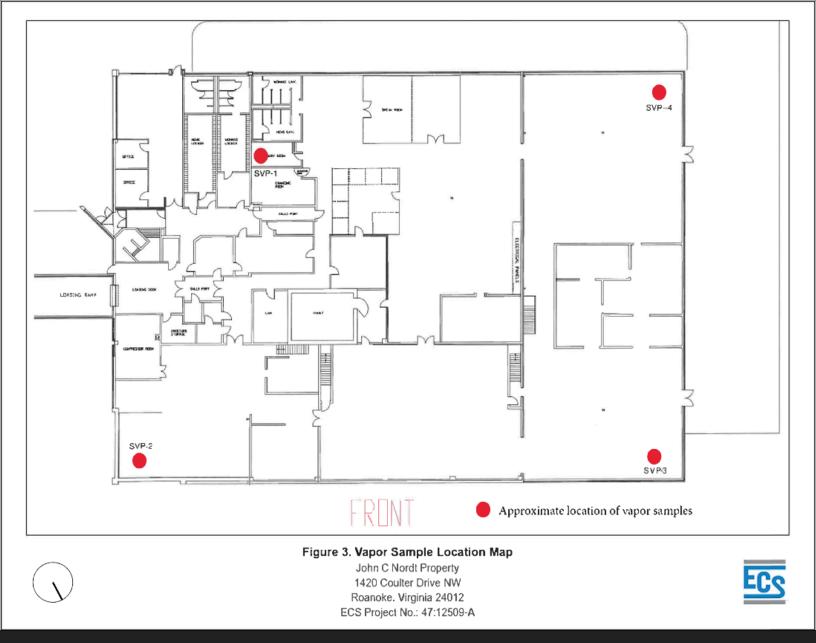
5.0 QUALIFICATIONS

The activities and evaluative approaches used in this assessment are consistent with those normally employed in environmental projects of this type. Our evaluation of site conditions has been based on our understanding of the site and project information, and the data obtained in our assessment. The constituents detected during this assessment and the concentrations at which they were detected are for the samples obtained and may not represent all constituents at the site or the maximum concentrations. The primary objective was to perform sufficient work to generally assess the potential for impacted subsurface soils, and groundwater with respect to the identified recognized environmental conditions. Due to the limited scope of services accepted with our proposal, it is not the intent of this report to define the full horizontal and lateral extent of impacted soil or groundwater, if any.

Appendix I: Figures

Figure 1. Site Location Map

John C Nordt Property 1420 Coulter Drive NW Roanoke, Virginia 24012 ECS Project No.: 47:12509-A



Joh

John C Nordt Property 1420 Coulter Drive NW Roanoke, Virginia 24012 ECS Project No.: 47:12509-A

Appendix II: Laboratory Data Sheets

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

September 27, 2021

Steven Hay ECS Mid-Atlantic, LLC 7670 Enon Drive Suite 101 Roanoke, VA 24019

RE: Project: Nordt Property Pace Project No.: 92560200

Dear Steven Hay:

Enclosed are the analytical results for sample(s) received by the laboratory on September 09, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni angela.baioni@pacelabs.com (704)875-9092 Project Manager

Enclosures

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: Nordt Property Pace Project No.: 92560200

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE ANALYTE COUNT

Project:Nordt PropertyPace Project No.:92560200

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92560200001		EPA 8015C Modified	BAJ	2	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92560200002	SB-02	EPA 8015C Modified	BAJ	2	PASI-C
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92560200003	SB-03	EPA 6010D	CBV, RDT	7	PASI-A
	EPA 7471B	DBB1	1	PASI-A	
	EPA 8260D	CL	70	PASI-C	
		SW-846	KDF	1	PASI-C
92560200004	SB-04	EPA 6010D	CBV, RDT	7	PASI-A
		EPA 7471B	DBB1	1	PASI-A
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92560200005	SB-05	EPA 6010D	RDT	7	PASI-A
		EPA 7471B	NMP	1	PASI-A
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C
92560200006	SB-06	EPA 6010D	RDT	7	PASI-A
		EPA 7471B	NMP	1	PASI-A
		EPA 8260D	CL	70	PASI-C
		SW-846	KDF	1	PASI-C

PASI-A = Pace Analytical Services - Asheville

PASI-C = Pace Analytical Services - Charlotte

SUMMARY OF DETECTION

Project: Nordt Property

Pace Project No.: 92560200

Method Parameters Result Units Report Limit Analyzed Qualifiers 52560200001 SB-01	Lab Sample ID	Client Sample ID					
SW-846 Percent Moisture 16.0 % 0.10 09/09/21 13.17 N2 SUS-86 Percent Moisture 28.3 % 0.10 09/09/21 13.17 N2 SUS-86 Percent Moisture 28.3 % 0.10 09/09/21 13.17 N2 SUS-86 Percent Moisture 28.3 % 0.10 09/09/21 13.17 N2 SUS-86 Percent Moisture 15.9 mg/kg 0.12 09/15/21 17.24 EPA 60100 Barium 51.8 mg/kg 0.10 09/15/21 17.24 EPA 60100 Chromium 52.0 mg/kg 0.20 09/15/21 17.24 EPA 60100 Selenium 2.5 mg/kg 0.20 09/15/21 17.24 EPA 60100 Arrow 0.30 % 0.10 09/09/21 33.17 N2 S256020004 Berly-Lerbuly lether 17.6 ug/kg 9.5 09/16/21 17.27 EPA 80100 Chromium 42.1 mg/kg 0.40 09/15/21 17.27 EPA 60100 Caro	Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
9260200002 SB-02 SW-846 Percent Moisture 28.3 % 0.10 09/09/21 13:17 N2 926020003 SB-3 EPA 6010D Barium 51.8 mg/kg 3.0 09/15/21 17:24 EPA 6010D Catomium 0.32 mg/kg 0.12 09/15/21 17:24 EPA 6010D Catomium 0.32 mg/kg 0.12 09/15/21 17:24 EPA 6010D Catomium 0.32 mg/kg 0.16 09/15/21 17:24 EPA 6010D Lead 4.3.2 mg/kg 0.06 09/15/21 17:24 EPA 6010D Lead 4.3.2 mg/kg 0.06 09/15/21 17:24 EPA 6010D Methyl-tert-bulyl ether 17.6 ug/kg 0.01 09/10/21 3:39 C7 SW-846 Percent Moisture 30.0 % 0.10 09/15/21 17:27 EPA 6010D Arsenic 8.7 mg/kg 0.81 09/15/21 17:27 EPA 6010D Catomium	92560200001	SB-01					
SW-846 Percent Moisture 28.3 % 0.10 09/09/21 13:17 N2 SE56020003 SB-03 EPA 60100 Arsenic 15.9 mg/kg 3.0 09/15/21 17:24 EPA 60100 Cadmium 0.32 mg/kg 0.12 09/15/21 17:24 EPA 60100 Cadmium 52.0 mg/kg 0.12 09/15/21 17:24 EPA 60100 Cadmium 52.0 mg/kg 0.06 09/15/21 17:24 EPA 60100 Selenium 2.5 mg/kg 0.06 09/15/21 17:24 EPA 74718 Mercury 0.082 mg/kg 0.06 09/15/21 17:24 EPA 80100 Arsenic 8.7 mg/kg 0.80 09/15/21 17:27 EPA 60100 Barium 6.2 mg/kg 0.81 09/15/21 17:27 EPA 60100 Cadmium 0.24 mg/kg 0.81 09/15/21 17:27 EPA 60100 Chromium 42.1 mg/kg 0.81 09/15/21 17:27	SW-846	Percent Moisture	16.0	%	0.10	09/09/21 13:17	N2
925020003 SB-03 EPA 6010D Asenic 15.9 mg/kg 3.0 09/15/21 17:24 EPA 6010D Barium 51.8 mg/kg 1.2 09/15/21 17:24 EPA 6010D Cadmium 0.32 mg/kg 0.12 09/15/21 17:24 EPA 6010D Chromium 52.0 mg/kg 0.12 09/15/21 17:24 EPA 6010D Selenium 2.5 mg/kg 1.2 09/15/21 17:24 EPA 6010D Selenium 2.5 mg/kg 0.66 09/23/21 13:13 EPA 2620D Metny-Herb-butyl ether 1.7.6 ug/kg 9.5 0.9/10/21 23:39 C7 SW-86 Percent Moisture 3.0 % 0.10 0.9/02/21 13:17 N2 9256020004 Arsenic 8.7 mg/kg 0.81 09/15/21 17:27 EPA 6010D Barium 6.2.2 mg/kg 0.81 09/15/21 17:27 EPA 6010D Chromium 4.2.1 mg/kg 0.81 09/15/21 17:27 EPA 6010D Le	92560200002	SB-02					
EPA 60100 Arsenic 15.9 mg/kg 3.0 09/15/21 17.24 EPA 60100 Barium 51.8 mg/kg 1.2 09/15/21 17.24 EPA 60100 Cadmium 0.32 mg/kg 0.12 09/15/21 17.24 EPA 60100 Chromium 52.0 mg/kg 0.12 09/15/21 17.24 EPA 60100 Lead 43.2 mg/kg 1.2 09/15/21 17.24 EPA 60100 Selenium 2.5 mg/kg 0.2 09/15/21 17.24 EPA 6100 Metnyl-tert-butyl etter 17.6 ug/kg 9.5 09/10/21 23:39 C7 SW-846 Percont Moisture 30.0 % 0.10 09/09/21 13:17 N2 SE6020004 Assenic 8.7 mg/kg 0.81 09/15/21 17:27 EPA 60100 Arsenic 8.7 mg/kg 0.81 09/15/21 17:27 EPA 60100 Chomium 0.24 mg/kg 0.81 09/15/21 17:27 EPA 60100 Chomium 0.24 mg/kg 0.81	SW-846	Percent Moisture	28.3	%	0.10	09/09/21 13:17	N2
EPA 6010D Barium 51.8 mg/kg 1.2 09/15/21 17:24 EPA 6010D Cadmium 0.32 mg/kg 0.61 09/15/21 17:24 EPA 6010D Lead 43.2 mg/kg 0.20 09/15/21 17:24 EPA 6010D Selenium 2.5 mg/kg 0.06 09/15/21 17:24 EPA 6010D Selenium 2.5 mg/kg 0.06 09/15/21 17:24 EPA 7471B Mercury 0.082 mg/kg 0.06 09/15/21 17:24 EPA 8260D Methyl-tert-butyl ether 17.6 ug/kg 0.5 09/10/21 23:39 C7 SW-846 Percent Moisture 30.0 % 0.10 09/15/21 17:27 EPA 6010D Arsenic 8.7 mg/kg 0.81 09/15/21 17:27 EPA 6010D Cadmium 0.24 mg/kg 0.81 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 6010D Lead 26.1 mg/kg 0.81 09/15/21	92560200003	SB-03					
EPA 6010D Cadmium 0.32 mg/kg 0.12 09/15/21 17:24 EPA 6010D Chromium 52.0 mg/kg 0.61 09/15/21 17:24 EPA 6010D Lead 43.2 mg/kg 1.2 09/15/21 17:24 EPA 6010D Selenium 2.5 mg/kg 0.66 09/23/21 13:13 EPA 62010 Metroy-Lert-butyl ether 17.6 ug/kg 9.5 09/10/21 23:39 C7 SW-846 Percent Moisture 30.0 % 0.10 09/09/21 13:17 N2 9256020004 B-04 N2 EPA 6010D Barium 69.2 mg/kg 0.81 09/15/21 17:27 EPA 6010D Chromium 4.21 mg/kg 0.81 09/15/21 17:27 EPA 6010D Chromium 4.21 mg/kg 0.81 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.61	EPA 6010D	Arsenic	15.9	mg/kg	3.0	09/15/21 17:24	
EPA 6010D Chromium 52.0 mg/kg 0.61 09/15/21 17:24 EPA 6010D Lead 43.2 mg/kg 1.2 09/15/21 17:24 EPA 6010D Selenium 2.5 mg/kg 0.062 09/16/21 17:24 EPA 4210B Mercury 0.082 mg/kg 0.066 09/23/21 13:13 EPA 8260D Methyl-terl-butyl ether 17.6 ug/kg 9.5 09/10/21 23:39 C7 SW-846 Percent Moisture 30.0 % 0.10 09/92/21 13:17 N2 9256020004 SB-04 30.0 % 0.10 09/15/21 17:27 EPA 6010D Cadmium 0.24 mg/kg 0.81 09/15/21 17:27 EPA 6010D Cadmium 0.24 mg/kg 0.40 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg	EPA 6010D	Barium	51.8	mg/kg	1.2	09/15/21 17:24	
EPA 6010D Chromium 52.0 mg/kg 0.61 09/15/21 17:24 EPA 6010D Lead 43.2 mg/kg 1.2 09/15/21 17:24 EPA 6010D Selenium 2.5 mg/kg 0.062 09/16/21 17:24 EPA 4210B Mercury 0.082 mg/kg 0.066 09/23/21 13:13 EPA 8260D Methyl-terl-butyl ether 17.6 ug/kg 9.5 09/10/21 23:39 C7 SW-846 Percent Moisture 30.0 % 0.10 09/92/21 13:17 N2 9256020004 SB-04 30.0 % 0.10 09/15/21 17:27 EPA 6010D Cadmium 0.24 mg/kg 0.81 09/15/21 17:27 EPA 6010D Cadmium 0.24 mg/kg 0.40 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg	EPA 6010D	Cadmium	0.32	mg/kg	0.12	09/15/21 17:24	
EFA 6010D Selenium 2.5 mg/kg 1.2 09/15/21 17.24 EPA 7471B Mercury 0.082 mg/kg 0.066 09/23/21 13.13 EPA 8260D Methyl-tert-butyl ether 17.6 ug/kg 9.5 09/10/21 23.39 C7 SW-846 Percent Moisture 30.0 % 0.10 09/09/21 13.17 N2 SE04 EPA 6010D Arsenic 8.7 mg/kg 0.01 09/15/21 17.27 EPA 6010D Barlum 0.24 mg/kg 0.81 09/15/21 17.27 EPA 6010D Cadmium 0.24 mg/kg 0.81 09/15/21 17.27 EPA 6010D Lead 26.3 mg/kg 0.41 09/15/21 17.27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17.27 EPA 6010D Lead 26.1 mg/kg 0.81 09/15/21 17.27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17.27 EPA 6010D Lead 26.0 mg/kg	EPA 6010D	Chromium	52.0		0.61	09/15/21 17:24	
EPA 7471B Mercury 0.082 mg/kg 0.066 09/23/21 13:13 EPA 3260D Methyl-tert-butyl ether 17.6 ug/kg 9.5 09/10/21 23:39 C7 SW-846 Percent Moisture 30.0 % 0.10 09/09/21 13:17 N2 9256020004 SB-04 N2 EPA 6010D Arsenic 8.7 mg/kg 0.81 09/15/21 17:27 EPA 6010D Chromium 0.24 mg/kg 0.41 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.41 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 471B Mercury 0.098 mg/kg 0.81 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 6010D Methyl-tert-butyl ether 10.2 ug/kg 0.10 09/02/21 3:15	EPA 6010D	Lead	43.2	mg/kg	1.2	09/15/21 17:24	
EPA 8260D Methyl-tert-butyl ether 17.6 ug/kg 9.5 09/10/21 23.39 C7 SW-846 Percent Moisture 30.0 % 0.10 09/09/21 13:17 N2 9256020004 SE-04 N2 EPA 6010D Arsenic 8.7 mg/kg 0.81 09/15/21 17:27	EPA 6010D	Selenium	2.5	mg/kg	1.2	09/15/21 17:24	
EPA 8260D Methyl-tert-butyl ether 17.6 ug/kg 9.5 09/10/21 23:39 C7 SW-846 Percent Moisture 30.0 % 0.10 09/09/21 13:17 N2 9256020004 SE-04 N2 EPA 6010D Barium 69.2 mg/kg 0.81 09/15/21 17:27 EPA 6010D Cadmium 0.24 mg/kg 0.81 09/15/21 17:27 EPA 6010D Chromium 42.1 mg/kg 0.81 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 4260D Metnyl-tert-butyl ether 10.2 ug/kg 7.6 09/10/21 23:57 C7 SW-846 Percent Moisture 26.1 % 0.10 09/09/21 13:17 N2 9256020005 SB-05 10.0 <td>EPA 7471B</td> <td>Mercury</td> <td>0.082</td> <td>mg/kg</td> <td>0.066</td> <td>09/23/21 13:13</td> <td></td>	EPA 7471B	Mercury	0.082	mg/kg	0.066	09/23/21 13:13	
SW-846 Percent Moisture 30.0 % 0.10 09/09/21 13:17 N2 92560200004 SB-04 EPA 6010D Arsenic 8.7 mg/kg 0.0 09/15/21 17:27 EPA 6010D Cadmium 69.2 mg/kg 0.81 09/15/21 17:27 EPA 6010D Cadmium 0.24 mg/kg 0.81 09/15/21 17:27 EPA 6010D Chromium 42.1 mg/kg 0.81 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 6010D Mercury 0.098 mg/kg 0.07 09/23/21 13:15 EPA 6010D Selenium 1.4 mg/kg 0.10 09/10/21 23:57 C7 SW-846 Percent Moisture 10.2 ug/kg 0.6 09/16/21 11:09 EPA 6010D Barium	EPA 8260D	-	17.6		9.5	09/10/21 23:39	C7
EPA 6010D Arsenic 8.7 mg/kg 0.0 9/15/21 17:27 EPA 6010D Barium 69.2 mg/kg 0.81 09/15/21 17:27 EPA 6010D Cadmium 0.24 mg/kg 0.81 09/15/21 17:27 EPA 6010D Chromium 42.1 mg/kg 0.81 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 6010D Mercury 0.098 mg/kg 0.072 09/23/21 17:47 EPA 6010D Mercury 0.098 mg/kg 0.10 09/09/21 13:17 N2 92560200005 SB-05 EPA 6010D Chromium 39.7 mg/kg 6.3 09/16/21 11:09 EPA 6010D Lead 26.0 mg/kg 1.0 0.0076 09/25/21 17:40 EPA 6010D Lead	SW-846		30.0		0.10	09/09/21 13:17	N2
EPA 6010D Barium 69.2 mg/kg 0.81 09/15/21 17:27 EPA 6010D Cadmium 0.24 mg/kg 0.081 09/15/21 17:27 EPA 6010D Chromium 42.1 mg/kg 0.40 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 7471B Mercury 0.098 mg/kg 0.072 09/23/21 13:15 EPA 8260D Methyl-tert-butyl ether 10.2 ug/kg 7.6 09/10/21 23:57 C7 SW-846 Percent Moisture 49.8 mg/kg 0.10 09/09/21 13:17 N2 EPA 6010D Chromium 39.7 mg/kg 6.3 09/16/21 11:09 EPA 6010D Lead 26.0 mg/kg 1.0 09/16/21 11:09 EPA 6010D Lead 26.0 mg/kg 0.	92560200004	SB-04					
EPA 6010DCadmium0.24mg/kg0.08109/15/21 17:27EPA 6010DChromium42.1mg/kg0.4009/15/21 17:27EPA 6010DLead26.3mg/kg0.8109/15/21 17:27EPA 6010DSelenium1.4mg/kg0.8109/15/21 17:27EPA 7471BMercury0.098mg/kg0.07209/23/21 13:15EPA 8260DMethyl-tert-butyl ether10.2ug/kg7.609/10/21 23:57C7SW-846Percent Moisture26.1%0.1009/09/21 13:17N292560200005SB-05EPA 6010DBarium49.8mg/kg6.309/16/21 11:09EPA 6010DChromium39.7mg/kg6.309/16/21 11:09EPA 6010DLead26.0mg/kg0.007609/25/21 16:45SW-846Percent Moisture23.9%0.1009/09/21 13:18N29256020006SB-06SB-06SE-06SE-06SE-06SE-06EPA 6010DArsenic35.5mg/kg2.809/15/21 17:40EPA 6010DArsenic39.9mg/kg0.1109/15/21 17:40EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DLead<	EPA 6010D	Arsenic	8.7	mg/kg	2.0	09/15/21 17:27	
EPA 6010D Chromium 42.1 mg/kg 0.40 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 7471B Mercury 0.098 mg/kg 0.72 09/23/21 13:15 EPA 8260D Methyl-tert-butyl ether 10.2 ug/kg 7.6 09/10/21 23:7 C7 SW-846 Percent Moisture 26.1 % 0.10 09/09/21 13:17 N2 92560200005 SB-05 EPA 6010D Chromium 39.7 mg/kg 6.3 09/16/21 11:09 EPA 6010D Lead 26.0 mg/kg 0.26 09/16/21 11:09 Secondot 11:09 EPA 6010D Lead 26.0 mg/kg 0.26 09/16/21 11:09 Secondot 11:09 SW-846 Percent Moisture 23.9 % 0.10 09/09/21 13:18 N2 <td>EPA 6010D</td> <td>Barium</td> <td>69.2</td> <td>mg/kg</td> <td>0.81</td> <td>09/15/21 17:27</td> <td></td>	EPA 6010D	Barium	69.2	mg/kg	0.81	09/15/21 17:27	
EPA 6010D Chromium 42.1 mg/kg 0.40 09/15/21 17:27 EPA 6010D Lead 26.3 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 7471B Mercury 0.098 mg/kg 0.72 09/23/21 13:15 EPA 8260D Methyl-tert-butyl ether 10.2 ug/kg 7.6 09/10/21 23:57 C7 SW-846 Percent Moisture 26.1 % 0.10 09/09/21 13:17 N2 92560200005 SB-05 EPA 6010D Barium 49.8 mg/kg 1.6 09/16/21 11:09 EPA 6010D Lead 26.0 mg/kg 0.3 09/16/21 11:09 1.1 EPA 6010D Lead 26.0 mg/kg 0.26 09/15/21 17:40 1.8 SW-846 Percent Moisture 23.9 % 0.10 09/15/21 17:40 1.8 1.8	EPA 6010D	Cadmium	0.24	mg/kg	0.081	09/15/21 17:27	
EPA 6010DLead26.3mg/kg0.8109/15/21 17:27EPA 6010DSelenium1.4mg/kg0.8109/15/21 17:27EPA 7471BMercury0.098mg/kg0.07209/32/21 13:15EPA 8260DMethyl-tert-butyl ether10.2ug/kg7.609/10/21 23:57C7SW-846Percent Moisture26.1%0.1009/09/21 13:17N292560200005SB-05EPA 6010DBarium49.8mg/kg12.609/16/21 11:09EPA 6010DChromium39.7mg/kg6.309/16/21 11:09EPA 6010DLead26.0mg/kg12.609/16/21 11:09EPA 4711BMercury0.093mg/kg0.007609/25/21 16:45SW-846Percent Moisture23.9%0.1009/09/21 13:18N292560200006SB-06EPA 6010DArsenic35.5mg/kg1.109/15/21 17:40EPA 6010DBarium18.4mg/kg1.109/15/21 17:40EPA 6010DBarium30.1mg/kg0.1109/15/21 17:40EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DChromium30.1mg/kg0.1609/15/21 17:40EPA 6010DChromium30.1mg/kg0.1109/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40	EPA 6010D	Chromium	42.1		0.40	09/15/21 17:27	
EPA 6010D Selenium 1.4 mg/kg 0.81 09/15/21 17:27 EPA 7471B Mercury 0.098 mg/kg 0.072 09/3/21 13:15 EPA 8260D Methyl-tert-butyl ether 10.2 ug/kg 7.6 09/10/21 23:57 C7 SW-846 Percent Moisture 26.1 % 0.10 09/09/21 13:17 N2 92560200005 SB-05 E E F Mg/kg 1.6 09/16/21 11:09 EPA 6010D Barium 49.8 mg/kg 0.3 09/16/21 11:09 1109 EPA 6010D Lead 26.0 mg/kg 0.3 09/16/21 11:09 1109 EPA 6010D Lead 26.0 mg/kg 0.0076 09/25/21 16:45 11:09 SW-846 Percent Moisture 23.9 % 0.10 09/09/21 13:18 N2 92560200006 SB-06 E E E 1.4 mg/kg 1.1 09/15/21 17:40 92560200006 SB-06 E E 1.09	EPA 6010D	Lead	26.3		0.81	09/15/21 17:27	
EPA 7471BMercury0.098mg/kg0.07209/23/21 13:15EPA 8260DMethyl-tert-butyl ether10.2ug/kg7.609/10/21 23:57C7SW-846Percent Moisture26.1%0.1009/09/21 13:17N292560200005SB-05EPA 6010DBarium49.8mg/kg12.609/16/21 11:09EPA 6010DChromium39.7mg/kg6.309/16/21 11:09EPA 6010DLead26.0mg/kg12.609/16/21 11:09EPA 6010DLead26.0mg/kg0.007609/25/21 16:45SW-846Percent Moisture23.9%0.1009/09/21 13:18N292560200006SB-06EPA 6010DArsenic35.5mg/kg2.809/15/21 17:40EPA 6010DBarium18.4mg/kg1.109/15/21 17:40EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DCadmium30.1mg/kg1.109/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DLead </td <td>EPA 6010D</td> <td>Selenium</td> <td></td> <td></td> <td>0.81</td> <td>09/15/21 17:27</td> <td></td>	EPA 6010D	Selenium			0.81	09/15/21 17:27	
EPA 8260D SW-846Methyl-tert-butyl ether Percent Moisture10.2 26.1ug/kg7.6 %0.9/10/21 23:57 0.00C7 SW-8469256020005SB-05EPA 6010DBarium Chromium49.8 39.7mg/kg12.6 mg/kg0.9/16/21 11:09 (4.3 0.01/21 11:09EPA 6010DLead26.0 26.0mg/kg12.6 mg/kg0.9/16/21 11:09 (4.3 0.01/21 11:09EPA 6010DLead26.0 26.0mg/kg12.6 (5.3 0.9/16/21 11:09EPA 6010DLead26.0 0mg/kg0.0076 0.9/25/21 16:45SW-846Percent Moisture23.9 23.9% 0.100.9/09/21 13:18 0.9/09/21 13:189256020006SB-06EEPA 6010DArsenic35.5 35.5mg/kg2.8 0.1109/15/21 17:40EPA 6010DCadmium30.1 30.39mg/kg0.11 0.1109/15/21 17:40EPA 6010DCadmium30.1 0.39mg/kg0.11 0.15/21 17:40EPA 6010DChromium30.1 0.9/15/21 17:400.9/15/21 17:40EPA 6010DLead17.0 0.9/15/21 17:400.56 0.9/15/21 17:40EPA 6010DLead17.0 0.9/15/21 17:400.9/15/21 17:40EPA 6010DLead17.0 0.9/15/21 17:400.9/15/21 17:40EPA 6010DLead17.0 0.9/15/21 17:400.9/15/21 17:40EPA 6010DLead0.17 0.170.0078 0.9/25/21 16:47	EPA 7471B	Mercury	0.098	00	0.072	09/23/21 13:15	
SW-846 Percent Moisture 26.1 % 0.10 09/09/21 13:17 N2 92560200005 SB-05 <	EPA 8260D		10.2		7.6		C7
EPA 6010DBarium49.8mg/kg12.609/16/2111:09EPA 6010DChromium39.7mg/kg6.309/16/2111:09EPA 6010DLead26.0mg/kg12.609/16/2111:09EPA 7471BMercury0.093mg/kg0.007609/25/2116:45SW-846Percent Moisture23.9%0.1009/09/2113:18N29256020006EPA 6010DArsenic35.5mg/kg2.809/15/2117:40EPA 6010DBarium18.4mg/kg1.109/15/2117:40EPA 6010DCadmium0.39mg/kg0.1109/15/2117:40EPA 6010DCadmium0.39mg/kg0.1109/15/2117:40EPA 6010DCadmium30.1mg/kg0.5609/15/2117:40EPA 6010DCadmium30.1mg/kg0.1609/15/2117:40EPA 6010DLead17.0mg/kg1.109/15/2117:40EPA 6010DLead17.0mg/kg1.109/15/2117:40EPA 6010DLead17.0mg/kg1.109/15/2117:40EPA 6010DLead17.0mg/kg1.109/15/2117:40EPA 6010DLead17.0mg/kg1.109/15/2117:40EPA 6010DSelenium2.3mg/kg1.109/15/2117:40EPA 6010DSelenium0.17mg/k							N2
EPA 6010DChromium39.7mg/kg6.309/16/21 11:09EPA 6010DLead26.0mg/kg12.609/16/21 11:09EPA 7471BMercury0.093mg/kg0.007609/25/21 16:45SW-846Percent Moisture23.9%0.1009/09/21 13:18N29256020006EPA 6010DArsenic35.5mg/kg2.809/15/21 17:40EPA 6010DBarium18.4mg/kg1.109/15/21 17:40EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DCadmium30.1mg/kg0.5609/15/21 17:40EPA 6010DCadmium30.1mg/kg0.5609/15/21 17:40EPA 6010DChromium30.1mg/kg1.109/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 610DSelenium2.3mg/kg1.109/15/21 17:40EPA 610DSelenium2.3mg/kg1.109/15/21 17:40 <t< td=""><td>92560200005</td><td>SB-05</td><td></td><td></td><td></td><td></td><td></td></t<>	92560200005	SB-05					
EPA 6010DLead26.0mg/kg12.609/16/21 11:09EPA 7471BMercury0.093mg/kg0.007609/25/21 16:45SW-846Percent Moisture23.9%0.1009/09/21 13:18N292560200066SB-06EPA 6010DArsenic35.5mg/kg2.809/15/21 17:40EPA 6010DBarium18.4mg/kg1.109/15/21 17:40EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DChromium30.1mg/kg0.5609/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DLead0.17mg/kg1.109/15/21 17:40EPA 6010DLead0.07.0mg/kg1.109/15/21 17:40EPA 6010DLead0.07.0mg/kg1.109/15/21 17:40EPA 6010DLead0.17mg/kg0.007809/25/21 16:47	EPA 6010D	Barium	49.8	mg/kg	12.6	09/16/21 11:09	
EPA 7471BMercury0.093mg/kg0.007609/25/21 16:45SW-846Percent Moisture23.9%0.1009/09/21 13:18N292560200006SB-06EPA 6010DArsenic35.5mg/kg2.809/15/21 17:40EPA 6010DBarium18.4mg/kg1.109/15/21 17:40EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DChromium30.1mg/kg0.5609/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DSelenium2.3mg/kg1.109/15/21 17:40EPA 6010DMercury0.17mg/kg1.109/15/21 17:40	EPA 6010D	Chromium	39.7	mg/kg	6.3	09/16/21 11:09	
SW-846 Percent Moisture 23.9 % 0.10 09/09/21 13:18 N2 92560200006 SB-06 EPA 6010D Arsenic 35.5 mg/kg 2.8 09/15/21 17:40 EPA 6010D Barium 18.4 mg/kg 1.1 09/15/21 17:40 EPA 6010D Cadmium 0.39 mg/kg 0.11 09/15/21 17:40 EPA 6010D Chromium 30.1 mg/kg 0.11 09/15/21 17:40 EPA 6010D Chromium 30.1 mg/kg 0.56 09/15/21 17:40 EPA 6010D Lead 17.0 mg/kg 0.11 09/15/21 17:40 EPA 6010D Lead 17.0 mg/kg 1.1 09/15/21 17:40 EPA 6010D Lead 17.0 mg/kg 1.1 09/15/21 17:40 EPA 6010D Selenium 2.3 mg/kg 1.1 09/15/21 17:40 EPA 7471B Mercury 0.17 mg/kg 0.0078 09/25/21 16:47	EPA 6010D	Lead	26.0	mg/kg	12.6	09/16/21 11:09	
92560200006SB-06EPA 6010DArsenic35.5mg/kg2.809/15/21 17:40EPA 6010DBarium18.4mg/kg1.109/15/21 17:40EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DChromium30.1mg/kg0.5609/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DSelenium2.3mg/kg1.109/15/21 17:40EPA 7471BMercury0.17mg/kg0.007809/25/21 16:47	EPA 7471B	Mercury	0.093	mg/kg	0.0076	09/25/21 16:45	
EPA 6010DArsenic35.5mg/kg2.809/15/21 17:40EPA 6010DBarium18.4mg/kg1.109/15/21 17:40EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DChromium30.1mg/kg0.5609/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DSelenium2.3mg/kg1.109/15/21 17:40EPA 6010DSelenium0.17mg/kg1.109/15/21 17:40	SW-846	Percent Moisture	23.9	%	0.10	09/09/21 13:18	N2
EPA 6010DBarium18.4mg/kg1.109/15/21 17:40EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DChromium30.1mg/kg0.5609/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DSelenium2.3mg/kg1.109/15/21 17:40EPA 6010DSelenium0.17mg/kg1.109/15/21 17:40	92560200006	SB-06					
EPA 6010DCadmium0.39mg/kg0.1109/15/21 17:40EPA 6010DChromium30.1mg/kg0.5609/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DSelenium2.3mg/kg1.109/15/21 17:40EPA 7471BMercury0.17mg/kg0.007809/25/21 16:47	EPA 6010D	Arsenic	35.5	mg/kg	2.8	09/15/21 17:40	
EPA 6010DChromium30.1mg/kg0.5609/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DSelenium2.3mg/kg1.109/15/21 17:40EPA 7471BMercury0.17mg/kg0.007809/25/21 16:47	EPA 6010D	Barium	18.4	mg/kg	1.1	09/15/21 17:40	
EPA 6010DChromium30.1mg/kg0.5609/15/21 17:40EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DSelenium2.3mg/kg1.109/15/21 17:40EPA 7471BMercury0.17mg/kg0.007809/25/21 16:47	EPA 6010D	Cadmium	0.39	mg/kg	0.11	09/15/21 17:40	
EPA 6010DLead17.0mg/kg1.109/15/21 17:40EPA 6010DSelenium2.3mg/kg1.109/15/21 17:40EPA 7471BMercury0.17mg/kg0.007809/25/21 16:47	EPA 6010D	Chromium	30.1		0.56	09/15/21 17:40	
EPA 6010D Selenium 2.3 mg/kg 1.1 09/15/21 17:40 EPA 7471B Mercury 0.17 mg/kg 0.0078 09/25/21 16:47	EPA 6010D	Lead	17.0		1.1		
EPA 7471B Mercury 0.17 mg/kg 0.0078 09/25/21 16:47		Selenium					
							N2

Nordt Property

Pace Project No.: 92560200

Sample: SB-01	Lab ID: 925		Collected: 09/07/2				/latrix: Solid	
Results reported on a "dry weight" Parameters	Results	<i>usted for pe</i> Units	<i>rcent moisture, sa</i> Report Limit	DF	size and any dilu Prepared	t <i>ions.</i> Analyzed	CAS No.	Qual
						-		
8015 GCS THC-Diesel	Analytical Metr Pace Analytica		5C Modified Prepa Charlotte	ration	Method: EPA 3540	Ď		
Diesel Range Organics(C10-C28)	ND	mg/kg	6.0	1	09/13/21 11:35	09/13/21 21:49		
Surrogates								
n-Pentacosane (S)	44	%	32-130	1	09/13/21 11:35	09/13/21 21:49	629-99-2	
8260D/5035A/5030B Volatiles	Analytical Meth	nod: EPA 826	0D Preparation Me	ethod: I	EPA 5035A/5030B			
	Pace Analytica	I Services - (Charlotte					
Acetone	ND	ug/kg	143	1	09/10/21 12:25	09/10/21 23:02	67-64-1	
Benzene	ND	ug/kg	7.1	1	09/10/21 12:25	09/10/21 23:02	71-43-2	
Bromobenzene	ND	ug/kg	7.1	1	09/10/21 12:25	09/10/21 23:02	108-86-1	
Bromochloromethane	ND	ug/kg	7.1	1	09/10/21 12:25	09/10/21 23:02	74-97-5	
Bromodichloromethane	ND	ug/kg	7.1	1	09/10/21 12:25	09/10/21 23:02	75-27-4	
Bromoform	ND	ug/kg	7.1	1	09/10/21 12:25	09/10/21 23:02	75-25-2	
Bromomethane	ND	ug/kg	14.3	1		09/10/21 23:02		
2-Butanone (MEK)	ND	ug/kg	143	1		09/10/21 23:02		
n-Butylbenzene	ND	ug/kg	7.1	1		09/10/21 23:02		
sec-Butylbenzene	ND	ug/kg	7.1	1		09/10/21 23:02		
tert-Butylbenzene	ND	ug/kg	7.1	1		09/10/21 23:02		
Carbon tetrachloride	ND	ug/kg	7.1	1		09/10/21 23:02		
Chlorobenzene	ND	ug/kg	7.1	1		09/10/21 23:02		
Chloroethane	ND	ug/kg	14.3	1		09/10/21 23:02		
Chloroform	ND	ug/kg	7.1	1		09/10/21 23:02		
Chloromethane	ND	ug/kg	14.3	1		09/10/21 23:02		
2-Chlorotoluene	ND	ug/kg	7.1	1		09/10/21 23:02		
4-Chlorotoluene	ND	ug/kg	7.1	1		09/10/21 23:02		
1,2-Dibromo-3-chloropropane	ND	ug/kg	7.1	1		09/10/21 23:02		
Dibromochloromethane	ND	ug/kg	7.1	1		09/10/21 23:02		
1,2-Dibromoethane (EDB)	ND	ug/kg	7.1	1		09/10/21 23:02		
Dibromomethane	ND	ug/kg	7.1	1		09/10/21 23:02		
1,2-Dichlorobenzene	ND	ug/kg	7.1	1		09/10/21 23:02		
1,3-Dichlorobenzene	ND	ug/kg	7.1	1		09/10/21 23:02		
1,4-Dichlorobenzene	ND	ug/kg	7.1	1		09/10/21 23:02		
Dichlorodifluoromethane	ND	ug/kg ug/kg	14.3	1		09/10/21 23:02		v2
1,1-Dichloroethane	ND	ug/kg	7.1	1		09/10/21 23:02		٧Z
1,2-Dichloroethane	ND	ug/kg ug/kg	7.1	1		09/10/21 23:02		
1,1-Dichloroethene	ND		7.1	1		09/10/21 23:02		
cis-1,2-Dichloroethene	ND	ug/kg ug/kg	7.1	1		09/10/21 23:02		
trans-1,2-Dichloroethene	ND	ug/kg ug/kg	7.1	1		09/10/21 23:02		
	ND		7.1	1		09/10/21 23:02		
1,2-Dichloropropane 1,3-Dichloropropane	ND	ug/kg ug/kg	7.1	1		09/10/21 23:02		
2,2-Dichloropropane	ND		7.1	1		09/10/21 23:02		
	ND	ug/kg	7.1	1		09/10/21 23:02		
1,1-Dichloropropene	ND	ug/kg	7.1	1		09/10/21 23:02		
cis-1,3-Dichloropropene		ug/kg				09/10/21 23:02		
trans-1,3-Dichloropropene	ND ND	ug/kg	7.1 7.1	1 1		09/10/21 23:02		
Diisopropyl ether Ethylbenzene	ND	ug/kg ug/kg	7.1	1	09/10/21 12:25			

Project: Nordt Property

Pace Project No.: 92560200

Sample: SB-01	Lab ID: 925	60200001	Collected: 09/07/2	1 10:4	5 Received: 09	0/09/21 10:00 N	latrix: Solid	
Results reported on a "dry weight" k	asis and are adj	usted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B Volatiles	Analytical Meth	nod: EPA 82	260D Preparation Me	thod: E	EPA 5035A/5030B			
	Pace Analytica	I Services -	Charlotte					
Hexachloro-1,3-butadiene	ND	ug/kg	14.3	1	09/10/21 12:25	09/10/21 23:02	87-68-3	
2-Hexanone	ND	ug/kg	71.5	1	09/10/21 12:25	09/10/21 23:02	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	7.1	1	09/10/21 12:25	09/10/21 23:02	98-82-8	
p-lsopropyltoluene	ND	ug/kg	7.1	1		09/10/21 23:02		
Methylene Chloride	ND	ug/kg	28.6	1	09/10/21 12:25	09/10/21 23:02	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	71.5	1	09/10/21 12:25	09/10/21 23:02	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	7.1	1	09/10/21 12:25	09/10/21 23:02	1634-04-4	
Naphthalene	ND	ug/kg	7.1	1		09/10/21 23:02		
n-Propylbenzene	ND	ug/kg	7.1	1	09/10/21 12:25	09/10/21 23:02	103-65-1	
Styrene	ND	ug/kg	7.1	1		09/10/21 23:02		
1,1,1,2-Tetrachloroethane	ND	ug/kg	7.1	1	09/10/21 12:25	09/10/21 23:02	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	7.1	1	09/10/21 12:25	09/10/21 23:02	79-34-5	
Tetrachloroethene	ND	ug/kg	7.1	1	09/10/21 12:25	09/10/21 23:02	127-18-4	
Toluene	ND	ug/kg	7.1	1		09/10/21 23:02		
1,2,3-Trichlorobenzene	ND	ug/kg	7.1	1		09/10/21 23:02		
1,2,4-Trichlorobenzene	ND	ug/kg	7.1	1		09/10/21 23:02		
1,1,1-Trichloroethane	ND	ug/kg	7.1	1		09/10/21 23:02		
1,1,2-Trichloroethane	ND	ug/kg	7.1	1		09/10/21 23:02		
Trichloroethene	ND	ug/kg	7.1	1		09/10/21 23:02		
Trichlorofluoromethane	ND	ug/kg	7.1	1		09/10/21 23:02		
1,2,3-Trichloropropane	ND	ug/kg	7.1	1		09/10/21 23:02		
1,2,4-Trimethylbenzene	ND	ug/kg	7.1	1		09/10/21 23:02		
1,3,5-Trimethylbenzene	ND	ug/kg	7.1	1		09/10/21 23:02		
Vinyl acetate	ND	ug/kg	71.5	1		09/10/21 23:02		
Vinyl chloride	ND	ug/kg	14.3	1		09/10/21 23:02		
Xylene (Total)	ND	ug/kg	14.3	1		09/10/21 23:02		
m&p-Xylene	ND	ug/kg	14.3	1		09/10/21 23:02		
o-Xylene	ND	ug/kg	7.1	1		09/10/21 23:02		
Surrogates		~9/119		•	50, 10, 21 12.20	20, 10, 21 20.02		
Toluene-d8 (S)	98	%	70-130	1	09/10/21 12:25	09/10/21 23:02	2037-26-5	
4-Bromofluorobenzene (S)	95	%	69-134	1		09/10/21 23:02		
1,2-Dichloroethane-d4 (S)	93	%	70-130	1		09/10/21 23:02		
Percent Moisture	Analytical Meth	nod: SW-84	6					
	Pace Analytica	I Services -	Charlotte					
Percent Moisture	16.0	%	0.10	1		09/09/21 13:17		N2

Pace Project No.: 92560200

Sample: SB-02	Lab ID: 925		Collected: 09/07/2				Matrix: Solid	
Results reported on a "dry weight"	basis and are adj	usted for p	ercent moisture, sa	mple	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Meth	nod: EPA 80	15C Modified Prepa	ration	Method: EPA 3546	6		
	Pace Analytica	I Services -	Charlotte					
Diesel Range Organics(C10-C28)	ND	mg/kg	7.0	1	09/13/21 11:35	09/13/21 21:49		
Surrogates	112	mg/ng	1.0	•	00/10/21 11:00	00,10,212110		
n-Pentacosane (S)	55	%	32-130	1	09/13/21 11:35	09/13/21 21:49	629-99-2	
8260D/5035A/5030B Volatiles	Analytical Meth	nod: EPA 82	60D Preparation Me	ethod:	EPA 5035A/5030B	ł		
	Pace Analytica	I Services -	Charlotte					
Acetone	ND	ug/kg	183	1	09/10/21 12:25	09/10/21 23:20	67-64-1	
Benzene	ND	ug/kg	9.1	1		09/10/21 23:20		
Bromobenzene	ND	ug/kg	9.1	1		09/10/21 23:20		
Bromochloromethane	ND	ug/kg	9.1	1		09/10/21 23:20		
Bromodichloromethane	ND	ug/kg	9.1	1		09/10/21 23:20		
Bromoform	ND	ug/kg	9.1	1		09/10/21 23:20		
Bromomethane	ND	ug/kg	18.3	1		09/10/21 23:20		
2-Butanone (MEK)	ND	ug/kg	183	1		09/10/21 23:20		
n-Butylbenzene	ND	ug/kg	9.1	1		09/10/21 23:20		
sec-Butylbenzene	ND	ug/kg	9.1	1		09/10/21 23:20		
tert-Butylbenzene	ND	ug/kg	9.1	1		09/10/21 23:20		
Carbon tetrachloride	ND	ug/kg	9.1	1		09/10/21 23:20		
Chlorobenzene	ND	ug/kg	9.1	1		09/10/21 23:20		
Chloroethane	ND	ug/kg	18.3	1		09/10/21 23:20		
Chloroform	ND	ug/kg	9.1	1		09/10/21 23:20		
Chloromethane	ND	ug/kg	18.3	1		09/10/21 23:20		
2-Chlorotoluene	ND	ug/kg ug/kg	9.1	1		09/10/21 23:20		
4-Chlorotoluene	ND	ug/kg	9.1	1		09/10/21 23:20		
1,2-Dibromo-3-chloropropane	ND	ug/kg	9.1	1		09/10/21 23:20		
Dibromochloromethane	ND	ug/kg	9.1	1		09/10/21 23:20		
1,2-Dibromoethane (EDB)	ND	ug/kg ug/kg	9.1	1		09/10/21 23:20		
Dibromomethane	ND		9.1	1		09/10/21 23:20		
1,2-Dichlorobenzene	ND	ug/kg ug/kg	9.1	1		09/10/21 23:20		
1,3-Dichlorobenzene	ND		9.1	1		09/10/21 23:20		
1,4-Dichlorobenzene	ND	ug/kg ug/kg	9.1	1		09/10/21 23:20		
Dichlorodifluoromethane	ND		18.3	1		09/10/21 23:20		v2
1,1-Dichloroethane	ND	ug/kg	9.1	1		09/10/21 23:20		٧Z
,	ND	ug/kg	9.1	1		09/10/21 23:20		
1,2-Dichloroethane 1,1-Dichloroethene	ND	ug/kg	9.1	1		09/10/21 23:20		
cis-1,2-Dichloroethene	ND	ug/kg	9.1	1		09/10/21 23:20		
trans-1,2-Dichloroethene	ND	ug/kg	9.1	1		09/10/21 23:20		
1,2-Dichloropropane	ND	ug/kg	9.1	1		09/10/21 23:20		
1,3-Dichloropropane	ND	ug/kg	9.1	1		09/10/21 23:20		
	ND	ug/kg	9.1	1		09/10/21 23:20		
2,2-Dichloropropane		ug/kg				09/10/21 23:20		
1,1-Dichloropropene	ND	ug/kg	9.1	1				
cis-1,3-Dichloropropene	ND	ug/kg	9.1	1		09/10/21 23:20		
trans-1,3-Dichloropropene	ND	ug/kg	9.1	1		09/10/21 23:20		
Diisopropyl ether	ND	ug/kg	9.1	1		09/10/21 23:20		
Ethylbenzene	ND	ug/kg	9.1	1		09/10/21 23:20		

Project: Nordt Property

Pace Project No.: 92560200

Sample: SB-02	Lab ID: 925	60200002	Collected: 09/07/2	21 11:3	0 Received: 09	9/09/21 10:00 N	/latrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for p	ercent moisture, sa	mple	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B Volatiles	Analytical Meth	nod: EPA 82	60D Preparation Me	ethod:	EPA 5035A/5030B	5		
	Pace Analytica	l Services -	Charlotte					
Hexachloro-1,3-butadiene	ND	ug/kg	18.3	1	09/10/21 12:25	09/10/21 23:20	87-68-3	
2-Hexanone	ND	ug/kg	91.3	1	09/10/21 12:25	09/10/21 23:20	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	9.1	1	09/10/21 12:25	09/10/21 23:20	98-82-8	
p-lsopropyltoluene	ND	ug/kg	9.1	1	09/10/21 12:25	09/10/21 23:20	99-87-6	
Methylene Chloride	ND	ug/kg	36.5	1		09/10/21 23:20		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	91.3	1		09/10/21 23:20		
Methyl-tert-butyl ether	ND	ug/kg	9.1	1		09/10/21 23:20		
Naphthalene	ND	ug/kg	9.1	1		09/10/21 23:20		
n-Propylbenzene	ND	ug/kg	9.1	1		09/10/21 23:20		
Styrene	ND	ug/kg	9.1	1		09/10/21 23:20		
1,1,1,2-Tetrachloroethane	ND	ug/kg	9.1	1		09/10/21 23:20		
1,1,2,2-Tetrachloroethane	ND	ug/kg	9.1	1		09/10/21 23:20		
Tetrachloroethene	ND	ug/kg	9.1	1		09/10/21 23:20		
Toluene	ND	ug/kg	9.1	1		09/10/21 23:20		
1,2,3-Trichlorobenzene	ND	ug/kg	9.1	1		09/10/21 23:20		
1,2,4-Trichlorobenzene	ND	ug/kg	9.1	1		09/10/21 23:20		
1,1,1-Trichloroethane	ND	ug/kg	9.1	1		09/10/21 23:20		
1,1,2-Trichloroethane	ND	ug/kg ug/kg	9.1	1		09/10/21 23:20		
Trichloroethene	ND	ug/kg ug/kg	9.1	1		09/10/21 23:20		
Trichlorofluoromethane	ND	ug/kg ug/kg	9.1	1		09/10/21 23:20		
1,2,3-Trichloropropane	ND	ug/kg ug/kg	9.1	1		09/10/21 23:20		
	ND		9.1	1		09/10/21 23:20		
1,2,4-Trimethylbenzene		ug/kg						
1,3,5-Trimethylbenzene	ND	ug/kg	9.1	1		09/10/21 23:20		
Vinyl acetate	ND	ug/kg	91.3	1 1		09/10/21 23:20 09/10/21 23:20		
Vinyl chloride	ND	ug/kg	18.3					
Xylene (Total)	ND	ug/kg	18.3	1		09/10/21 23:20		
m&p-Xylene	ND	ug/kg	18.3	1		09/10/21 23:20		
o-Xylene	ND	ug/kg	9.1	1	09/10/21 12:25	09/10/21 23:20	95-47-6	
<i>Surrogates</i> Toluene-d8 (S)	98	%	70-130	1	00/10/21 12:25	09/10/21 23:20	2027 26 F	
4-Bromofluorobenzene (S)	98	%	69-134	1		09/10/21 23:20		
1,2-Dichloroethane-d4 (S)	98 91	%	70-130	1		09/10/21 23:20		
					00/10/21 12.20	00/10/21 20.20	11000-01-0	
Percent Moisture	Analytical Meth							
	Pace Analytica	l Services -	Charlotte					
Percent Moisture	28.3	%	0.10	1		09/09/21 13:17		N2

Project: Nordt Property

Pace Project No.: 92560200

Sample: SB-03	Lab ID: 925		Collected: 09/07/2				latrix: Solid	
Results reported on a "dry weigh	-			•	•			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010D Preparation Me	ethod: I	EPA 3050B			
	Pace Analytica	l Services -	Asheville					
Arsenic	15.9	mg/kg	3.0	1	09/10/21 10:18	09/15/21 17:24	7440-38-2	
Barium	51.8	mg/kg	1.2	1		09/15/21 17:24		
Cadmium	0.32	mg/kg	0.12	1		09/15/21 17:24		
Chromium	52.0	mg/kg	0.61	1		09/15/21 17:24		
Lead	43.2	mg/kg	1.2	1	09/10/21 10:18	09/15/21 17:24	7439-92-1	
Selenium	2.5	mg/kg	1.2	1	09/10/21 10:18	09/15/21 17:24	7782-49-2	
Silver	ND	mg/kg	0.61	1		09/15/21 14:52		
7471 Mercury	Analytical Meth	nod: EPA 74	71B Preparation Me	ethod: E	EPA 7471B			
	Pace Analytica	l Services -	Asheville					
Mercury	0.082	mg/kg	0.066	10	09/22/21 15:18	09/23/21 13:13	7439-97-6	
8260D/5035A/5030B Volatiles	Analytical Meth	nod: EPA 82	260D Preparation Me	ethod: I	EPA 5035A/5030B			
	Pace Analytica	l Services -	Charlotte					
Acetone	ND	ug/kg	190	1	09/10/21 12:25	09/10/21 23:39	67-64-1	
Benzene	ND	ug/kg	9.5	1		09/10/21 23:39		
Bromobenzene	ND	ug/kg	9.5	1		09/10/21 23:39		
Bromochloromethane	ND	ug/kg	9.5	1		09/10/21 23:39		
Bromodichloromethane	ND	ug/kg	9.5	1		09/10/21 23:39		
Bromoform	ND	ug/kg	9.5	1		09/10/21 23:39		
Bromomethane	ND	ug/kg	19.0	1		09/10/21 23:39		
2-Butanone (MEK)	ND	ug/kg	190	1		09/10/21 23:39		
n-Butylbenzene	ND	ug/kg	9.5	1		09/10/21 23:39		
sec-Butylbenzene	ND	ug/kg	9.5	1		09/10/21 23:39		
tert-Butylbenzene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	98-06-6	
Carbon tetrachloride	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	56-23-5	
Chlorobenzene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	108-90-7	
Chloroethane	ND	ug/kg	19.0	1	09/10/21 12:25	09/10/21 23:39	75-00-3	
Chloroform	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	67-66-3	
Chloromethane	ND	ug/kg	19.0	1	09/10/21 12:25	09/10/21 23:39	74-87-3	
2-Chlorotoluene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	95-49-8	
4-Chlorotoluene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	96-12-8	
Dibromochloromethane	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	106-93-4	
Dibromomethane	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	9.5	1		09/10/21 23:39		
1,4-Dichlorobenzene	ND	ug/kg	9.5	1		09/10/21 23:39		
Dichlorodifluoromethane	ND	ug/kg	19.0	1		09/10/21 23:39		v2
1,1-Dichloroethane	ND	ug/kg	9.5	1		09/10/21 23:39		
1,2-Dichloroethane	ND	ug/kg	9.5	1		09/10/21 23:39		
1,1-Dichloroethene	ND	ug/kg	9.5	1		09/10/21 23:39		
cis-1,2-Dichloroethene	ND	ug/kg	9.5	1		09/10/21 23:39		
trans-1,2-Dichloroethene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	156-60-5	

Project: Nordt Property

Pace Project No.: 92560200

Sample: SB-03	Lab ID: 925	60200003	Collected: 09/07/2	1 12:0	0 Received: 09	/09/21 10:00 N	Aatrix: Solid	
Results reported on a "dry weight"	basis and are adj	usted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B Volatiles	Analytical Meth	nod: EPA 82	60D Preparation Me	ethod: E	EPA 5035A/5030B			
	Pace Analytica	l Services -	Charlotte					
1,2-Dichloropropane	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	78-87-5	
1,3-Dichloropropane	ND	ug/kg	9.5	1		09/10/21 23:39		
2,2-Dichloropropane	ND	ug/kg ug/kg	9.5	1		09/10/21 23:39		
1,1-Dichloropropene	ND	ug/kg	9.5	1		09/10/21 23:39		
cis-1,3-Dichloropropene	ND	ug/kg ug/kg	9.5	1		09/10/21 23:39		
trans-1,3-Dichloropropene	ND	ug/kg ug/kg	9.5	1		09/10/21 23:39		
	ND		9.5	1		09/10/21 23:39		
Diisopropyl ether Ethylbenzene	ND	ug/kg	9.5	1		09/10/21 23:39		
		ug/kg				09/10/21 23:39		
Hexachloro-1,3-butadiene	ND	ug/kg	19.0	1				
2-Hexanone	ND	ug/kg	95.1	1		09/10/21 23:39		
Isopropylbenzene (Cumene)	ND	ug/kg	9.5	1		09/10/21 23:39		
p-lsopropyltoluene	ND	ug/kg	9.5	1		09/10/21 23:39		
Methylene Chloride	ND	ug/kg	38.0	1		09/10/21 23:39		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	95.1	1		09/10/21 23:39		~-
Methyl-tert-butyl ether	17.6	ug/kg	9.5	1		09/10/21 23:39		C7
Naphthalene	ND	ug/kg	9.5	1		09/10/21 23:39		
n-Propylbenzene	ND	ug/kg	9.5	1		09/10/21 23:39		
Styrene	ND	ug/kg	9.5	1		09/10/21 23:39		
1,1,1,2-Tetrachloroethane	ND	ug/kg	9.5	1		09/10/21 23:39		
1,1,2,2-Tetrachloroethane	ND	ug/kg	9.5	1		09/10/21 23:39		
Tetrachloroethene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	127-18-4	
Toluene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	79-00-5	
Trichloroethene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	79-01-6	
Trichlorofluoromethane	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	9.5	1		09/10/21 23:39		
1,3,5-Trimethylbenzene	ND	ug/kg	9.5	1	09/10/21 12:25	09/10/21 23:39	108-67-8	
Vinyl acetate	ND	ug/kg	95.1	1		09/10/21 23:39		
Vinyl chloride	ND	ug/kg	19.0	1		09/10/21 23:39		
Xylene (Total)	ND	ug/kg	19.0	1		09/10/21 23:39		
m&p-Xylene	ND	ug/kg	19.0	1		09/10/21 23:39		
o-Xylene	ND	ug/kg	9.5	1		09/10/21 23:39		
Surrogates	ND	ug/kg	5.5	1	03/10/21 12.23	03/10/21 23.33	33-47-0	
Toluene-d8 (S)	98	%	70-130	1	09/10/21 12:25	09/10/21 23:39	2037-26-5	
4-Bromofluorobenzene (S)	97	%	69-134	1		09/10/21 23:39		
1,2-Dichloroethane-d4 (S)	88	%	70-130	1		09/10/21 23:39		
Percent Moisture	Analytical Meth	nod: SW-840	6					
								
	Pace Analytica	I Services -	Charlotte					

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Nordt Property

Pace Project No.: 92560200

Sample: SB-04	Lab ID: 925	60200004	Collected: 09/08/2	21 09:0	0 Received: 09	0/09/21 10:00 N	latrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for p	ercent moisture, sa	ample s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10D Preparation Me	ethod: E	EPA 3050B			
	Pace Analytica	I Services -	Asheville					
Arsenic	8.7	mg/kg	2.0	1	09/10/21 10:18	09/15/21 17:27	7440-38-2	
Barium	69.2	mg/kg	0.81	1		09/15/21 17:27		
Cadmium	0.24	mg/kg	0.081	1		09/15/21 17:27		
Chromium	42.1	mg/kg	0.40	1		09/15/21 17:27		
Lead	26.3	mg/kg	0.81	1	09/10/21 10:18	09/15/21 17:27	7439-92-1	
Selenium	1.4	mg/kg	0.81	1	09/10/21 10:18	09/15/21 17:27	7782-49-2	
Silver	ND	mg/kg	0.40	1	09/10/21 10:18	09/15/21 14:55	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 74	71B Preparation Me	ethod: E	EPA 7471B			
	Pace Analytica	I Services -	Asheville					
Mercury	0.098	mg/kg	0.072	10	09/22/21 15:18	09/23/21 13:15	7439-97-6	
8260D/5035A/5030B Volatiles	Analytical Meth	nod: EPA 82	260D Preparation Me	ethod: E	EPA 5035A/5030B			
	Pace Analytica	I Services -	Charlotte					
Acetone	ND	ug/kg	152	1	00/10/21 12:25	09/10/21 23:57	67-64-1	
Benzene	ND	ug/kg	7.6	1		09/10/21 23:57		
Bromobenzene	ND	ug/kg	7.6	1		09/10/21 23:57		
Bromochloromethane	ND	ug/kg	7.6	1		09/10/21 23:57		
Bromodichloromethane	ND	ug/kg	7.6	1		09/10/21 23:57		
Bromoform	ND	ug/kg	7.6	1		09/10/21 23:57		
Bromomethane	ND	ug/kg	15.2	1		09/10/21 23:57		
2-Butanone (MEK)	ND	ug/kg	152	1		09/10/21 23:57		
n-Butylbenzene	ND	ug/kg	7.6	1		09/10/21 23:57		
sec-Butylbenzene	ND	ug/kg	7.6	1		09/10/21 23:57		
tert-Butylbenzene	ND	ug/kg	7.6	1		09/10/21 23:57		
Carbon tetrachloride	ND	ug/kg	7.6	1		09/10/21 23:57		
Chlorobenzene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	108-90-7	
Chloroethane	ND	ug/kg	15.2	1	09/10/21 12:25	09/10/21 23:57	75-00-3	
Chloroform	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	67-66-3	
Chloromethane	ND	ug/kg	15.2	1	09/10/21 12:25	09/10/21 23:57	74-87-3	
2-Chlorotoluene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	95-49-8	
4-Chlorotoluene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	96-12-8	
Dibromochloromethane	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	106-93-4	
Dibromomethane	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	7.6	1		09/10/21 23:57		
1,4-Dichlorobenzene	ND	ug/kg	7.6	1		09/10/21 23:57		
Dichlorodifluoromethane	ND	ug/kg	15.2	1		09/10/21 23:57		v2
1,1-Dichloroethane	ND	ug/kg	7.6	1		09/10/21 23:57		
1,2-Dichloroethane	ND	ug/kg	7.6	1		09/10/21 23:57		
1,1-Dichloroethene	ND	ug/kg	7.6	1		09/10/21 23:57		
cis-1,2-Dichloroethene	ND	ug/kg	7.6	1		09/10/21 23:57		
trans-1,2-Dichloroethene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	156-60-5	

Project: Nordt Property

Pace Project No.: 92560200

Sample: SB-04	Lab ID: 925	60200004	Collected: 09/08/2	1 09:0	0 Received: 09	0/09/21 10:00 N	latrix: Solid	
Results reported on a "dry weight"	basis and are adj	iusted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A/5030B Volatiles	Analytical Met	hod: EPA 82	60D Preparation Me	ethod: E	EPA 5035A/5030B			
	Pace Analytica	al Services -	Charlotte					
1,2-Dichloropropane	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	78-87-5	
1,3-Dichloropropane	ND	ug/kg	7.6	1		09/10/21 23:57		
2,2-Dichloropropane	ND	ug/kg	7.6	1		09/10/21 23:57		
1,1-Dichloropropene	ND	ug/kg ug/kg	7.6	1		09/10/21 23:57		
cis-1,3-Dichloropropene	ND	ug/kg ug/kg	7.6	1		09/10/21 23:57		
trans-1,3-Dichloropropene	ND	ug/kg ug/kg	7.6	1		09/10/21 23:57		
	ND		7.6	1		09/10/21 23:57		
Diisopropyl ether		ug/kg	7.6	1				
Ethylbenzene	ND	ug/kg	15.2			09/10/21 23:57 09/10/21 23:57		
Hexachloro-1,3-butadiene	ND	ug/kg	76.2	1		09/10/21 23:57		
2-Hexanone	ND	ug/kg		1				
Isopropylbenzene (Cumene)	ND	ug/kg	7.6	1		09/10/21 23:57		
p-lsopropyltoluene	ND	ug/kg	7.6	1		09/10/21 23:57		
Methylene Chloride	ND	ug/kg	30.5	1		09/10/21 23:57		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	76.2	1		09/10/21 23:57		~-
Methyl-tert-butyl ether	10.2	ug/kg	7.6	1		09/10/21 23:57		C7
Naphthalene	ND	ug/kg	7.6	1		09/10/21 23:57		
n-Propylbenzene	ND	ug/kg	7.6	1		09/10/21 23:57		
Styrene	ND	ug/kg	7.6	1		09/10/21 23:57		
1,1,1,2-Tetrachloroethane	ND	ug/kg	7.6	1		09/10/21 23:57		
1,1,2,2-Tetrachloroethane	ND	ug/kg	7.6	1		09/10/21 23:57		
Tetrachloroethene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	127-18-4	
Toluene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	79-00-5	
Trichloroethene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	79-01-6	
Trichlorofluoromethane	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	7.6	1	09/10/21 12:25	09/10/21 23:57	108-67-8	
Vinyl acetate	ND	ug/kg	76.2	1	09/10/21 12:25	09/10/21 23:57	108-05-4	
Vinyl chloride	ND	ug/kg	15.2	1	09/10/21 12:25	09/10/21 23:57	75-01-4	
Xylene (Total)	ND	ug/kg	15.2	1		09/10/21 23:57		
m&p-Xylene	ND	ug/kg	15.2	1		09/10/21 23:57		
o-Xylene	ND	ug/kg	7.6	1		09/10/21 23:57		
Surrogates		3' 9						
Toluene-d8 (S)	98	%	70-130	1	09/10/21 12:25	09/10/21 23:57	2037-26-5	
4-Bromofluorobenzene (S)	96	%	69-134	1		09/10/21 23:57		
1,2-Dichloroethane-d4 (S)	87	%	70-130	1		09/10/21 23:57		
Percent Moisture	Analytical Met	hod: SW-846	3					
	Pace Analytica	al Services -	Charlotte					

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Nordt Property

Pace Project No.: 92560200

Sample: SB-05	Lab ID: 925		Collected: 09/08/2				/atrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Mether	nod: EPA 60	10D Preparation Me	ethod: E	EPA 3050B			
	Pace Analytica	l Services -	Asheville					
Arsenic	ND	mg/kg	31.6	10	09/10/21 10:18	09/16/21 11:09	7440-38-2	
Barium	49.8	mg/kg	12.6	10		09/16/21 11:09		
Cadmium	ND	mg/kg	1.3	10		09/16/21 11:09		
Chromium	39.7	mg/kg	6.3	10		09/16/21 11:09		
Lead	26.0	mg/kg	12.6	10		09/16/21 11:09		
Selenium	ND	mg/kg	12.6	10		09/16/21 11:09		
Silver	ND	mg/kg	6.3	10		09/16/21 11:09		
7471 Mercury	Analytical Mether	nod: EPA 74	71B Preparation Me	thod: E	PA 7471B			
	Pace Analytica	l Services -	Asheville					
Mercury	0.093	mg/kg	0.0076	1	09/25/21 14:32	09/25/21 16:45	7439-97-6	
8260D/5035A/5030B Volatiles	Analytical Met	nod: EPA 82	260D Preparation Me	ethod: E	EPA 5035A/5030B	1		
	Pace Analytica							
Acetone	ND	ug/kg	144	1	00/10/21 12:25	09/11/21 00:16	67-64-1	
Benzene	ND	ug/kg	7.2	1		09/11/21 00:16		
Bromobenzene	ND	ug/kg	7.2	1		09/11/21 00:16		
Bromochloromethane	ND	ug/kg	7.2	1		09/11/21 00:16		
Bromodichloromethane	ND	ug/kg	7.2	1		09/11/21 00:10		
Bromoform	ND	ug/kg	7.2	1		09/11/21 00:16		
Bromomethane	ND	ug/kg	14.4	1		09/11/21 00:16		
2-Butanone (MEK)	ND	ug/kg	144	1		09/11/21 00:10		
n-Butylbenzene	ND	ug/kg	7.2	1		09/11/21 00:10		
sec-Butylbenzene	ND	ug/kg	7.2	1		09/11/21 00:10		
tert-Butylbenzene	ND	ug/kg	7.2	1		09/11/21 00:10		
Carbon tetrachloride	ND	ug/kg	7.2	1		09/11/21 00:16		
Chlorobenzene	ND	ug/kg	7.2	1		09/11/21 00:16		
Chloroethane	ND	ug/kg	14.4	1		09/11/21 00:16		
Chloroform	ND	ug/kg	7.2	1		09/11/21 00:16		
Chloromethane	ND	ug/kg	14.4	1		09/11/21 00:16		
2-Chlorotoluene	ND	ug/kg	7.2	1		09/11/21 00:16		
4-Chlorotoluene	ND	ug/kg	7.2	1		09/11/21 00:16		
1,2-Dibromo-3-chloropropane	ND	ug/kg	7.2	1		09/11/21 00:16		
Dibromochloromethane	ND	ug/kg	7.2	1		09/11/21 00:16		
1,2-Dibromoethane (EDB)	ND	ug/kg	7.2	1		09/11/21 00:16		
Dibromomethane	ND	ug/kg	7.2	1		09/11/21 00:16		
1,2-Dichlorobenzene	ND	ug/kg	7.2	1		09/11/21 00:16		
1,3-Dichlorobenzene	ND	ug/kg	7.2	1		09/11/21 00:16		
1,4-Dichlorobenzene	ND	ug/kg	7.2	1		09/11/21 00:16		
Dichlorodifluoromethane	ND	ug/kg	14.4	1		09/11/21 00:16		v2
1,1-Dichloroethane	ND	ug/kg	7.2	1		09/11/21 00:16		
1,2-Dichloroethane	ND	ug/kg	7.2	1		09/11/21 00:16		
1,1-Dichloroethene	ND	ug/kg	7.2	1		09/11/21 00:16		
cis-1,2-Dichloroethene	ND	ug/kg	7.2	1		09/11/21 00:16		
trans-1,2-Dichloroethene	ND	ug/kg	7.2	1		09/11/21 00:16		
		~9/119	· .Z	•	50, 10, 21 12.20	00, 11,21 00.10	100 00 0	

Project: Nordt Property

Pace Project No.: 92560200

Basebol 5935A/5930B Volatiles Analytical Method: EPA 8280D Preparation Method: EPA 5035A/5930B Pace Analytical Services - Charlotte Pace Analytical Services - Charlotte 1.2-Dichioropropane ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 78.47.5 1.3-Dichioropropane ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 564-20.7 1.1-Dichioropropane ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 563-56-6 cis1-3-Dichioropropane ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 106-10-15 Disopropyletorpene ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 106-42-6 Disopropyletorpene ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 59-78-6 Ethylbenzene ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 99-87-6 Methylone Chionide ND ug/kg 7.2 1 09/10/21 1225	Sample: SB-05	Lab ID: 925	60200005	Collected: 09/08/2	1 10:0	0 Received: 09	0/09/21 10:00 N	latrix: Solid	
Baseboly/5035A/5030B Volatiles Analytical Method: EPA 8260D Preparation Method: EPA 5035X/5030B Pace Analytical Services - Charlotte 1.0 - 00/10/21 12:25 09/11/21 100:16 78:47:5 1.3 - Dichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 59:42:0-7 2.2 - Dichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 59:42:0-7 1.3 - Dichloropropene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 56:35:6-6 1.3 - Dichloropropene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:6:1-0:5 Disporpylether ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 87:6:8-3 Ehylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 87:6:8-3 Ebyrbenzene (Cumene) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:6:10:1 Mathylane ND ug/kg 7.2	Results reported on a "dry weight	t" basis and are adj	iusted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Pace Analytical Services - Charlotte 1.2-Dichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 12:25-9 2.2-Dichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 58:35-86 2.2-Dichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 58:56-86 Disopropyl forpopane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:65:0-23 Disopropyl forpopane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:65:0-3 Disopropyl forpopane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 59:78-6 Disopropyl forusene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 59:78-6 Disopropyl forusene ND ug/kg 7.2	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
1.2-Dichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 78:37:5 3.2-Dichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 54:22.59 1.1-Dichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 56:35.8-6 66:15.30-Dichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:60:10-15-5 Dickopropene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:63:45:8-6 Dickopropene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:64:4-25 Dickoprophene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 17:6:3:7:6:3:3:5:6:7:6:3:7:6:7:6:7:6:7:6:7:6:7:6:7:6:7:6	8260D/5035A/5030B Volatiles	Analytical Met	hod: EPA 820	60D Preparation Me	thod: I	EPA 5035A/5030B			
1.3-Dickloropropane ND ug/kg 7.2 1 09/10/21 1225 09/11/21 03/11/21		Pace Analytica	al Services -	Charlotte					
1.3-Dichloropropane ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 142.28-9 2.2-Dichloropropane ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 544.20.7 1.1-Dichloropropene ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 10061-02-6 Dilsopropylether ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 1004-14-6 Hexachloro-1,3-butadiene ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 1004-14-6 Kexachloro-1,3-butadiene ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 88-28 Supropylbarzene (Cumene) ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 1034.44 Athylbarzene ND ug/kg 7.2 1 09/10/21 1225 09/11/21 00:16 103-45-1 Supropylbarzene ND ug/kg 7.2<	1 2-Dichloropropane	ND	ua/ka	72	1	09/10/21 12:25	09/11/21 00.16	78-87-5	
2.2-Dictionopropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 583-58-6 sis1-3-Dichtoropropene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 583-58-6 sis1-3-Dichtoropropene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10061-01-5 Disopropy lether ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 100-2-6 Ethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 87-8-3 Disopropylenzene (Cumene) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 99-8-7 Disopropylenzene (Cumene) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 109-8-7 Hethyl-tenchone (MIBK) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 109-4-5 Hethyl-tenchone (MIBK) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 109-4-5 Styrene ND ug/kg 7.2 1									
1,1-Dictoropropene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 683-86-6 cis-1,3-Dichloropropene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10061-01-5 Diisopropyl ether ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10061-02-6 Diisopropyl ether ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10-43-4 Hexachono-1,3-butadiene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 591-78-6 Sopropylbenzene (Cumene) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 591-78-6 Methylene Choride ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 1634-04-4 Aphthalene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 1634-04-4 Aphthalene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 1634-04-4 Aphthalene ND ug/kg 7.2 1 09/									
Disc.1.3.Dichloropropene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10061-01-5 Disporpoyl ether ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10061-01-5 Ethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-02-3 Ethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 87-68-3 Stopropylenzene (Cumene) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 591-78-6 Stopropylenzene (Cumene) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-10-1 Methyl-ert-budy ether ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-40-4 Naphthalene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-45-1 Styrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-45-1									
Itans-1,3-Dichloropropene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10.06-12-6 Disopropylether ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:11 00:16 10:4-14 Hexachloro-1,3-butadiene ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 00:16 57-86-3 Jexporpylbenzene (Currene) ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:16 59-86-76 Jexporpylbenzene (Currene) ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 10:6-10-1 Wethylere Choride ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 10:6-10-1 Wethylere Choride ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 10:6:10-4-4 Naphtalene ND ug/kg 7.2 1 09/10/21 12:5<	· · · ·								
Dilisopropyl ether ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:10 10:41 Ehylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:11 07:65-3 Ehylbenzene ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 07:65-3 Stopropylenzene (Curnene) ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 07:65-32 Abethylene Chloride ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 07:65-02 Hethyl-Pentone (MIBK) ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 07:65-02 Abethyl-Pentone (MIBK) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:11 07:65-03 Abethyl-Pentone (MIBK) ND ug/kg 7.2 1 09/10/21 12:5 09/11/21									
Ethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:10 14:4 Hexachloro-1,3-butadiene ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:10 59:78-6 Isopropythenzene (Curnene) ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 69:83-8 p-lsopropythenzene (Curnene) ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 00:16 75-08-2 4Methyl-2-pentanone (MIBK) ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 16:3-0-44 Naphthalene ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 16:3-0-44 Syrene ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 00:11 16:3-0-4-4 Syrene ND ug/kg 7.2 1 09/10/21 12:5 09/11/21 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Hexachloro-1,3-butadiene ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 87-68-3 2-Hexanone ND ug/kg 7.2.2 1 09/10/21 12:25 09/11/21 00:16 591-78-6 Sopropylborzene (Cumene) ND ug/kg 7.2.2 1 09/10/21 12:25 09/11/21 00:16 89-82-8 P-lsopropylborzene (Cumene) ND ug/kg 7.2.2 1 09/10/21 12:25 09/11/21 00:16 69-42-4 Hethylene Chloride ND ug/kg 7.2.2 1 09/10/21 12:25 09/11/21 00:16 163-40.4 Aughthalene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 10:16 103-65-1 Syrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 120-3-3 I,1,2-Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21									
2-Hexanone ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 59-178-6 Isopropylbenzene (Curmene) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-08-2 Pisopropylbourene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-08-2 4-Methyl-2-pentanone (MIBK) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:4-0-1 Methylene-Chowide ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:4-2-3 Naphthalene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:4-2-3 Styrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:4-2-3 1,1,2.7-Etrachloroethane ND ug/kg 7.2 1 09/10/21 12:5 09/11/21	5								
Isopropylbenzene (Cumene) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 98-82-8 p-Isopropylboluene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 98-82-8 Methylene Choride ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 163-10-1 Methylene Choride ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 163-40-44 Naphthalene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 103-85-1 Styrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 630-20-6 1,1,2.2-Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 73-45-5 Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 73-45-5 Toluene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 72-18-4 Toluene ND ug/kg 7.2 1 09/10/21 12:25 0	-								
p-IsoproyInlouene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 99-76 Methylene Chloride ND ug/kg 28.9 1 09/10/21 12:25 09/11/21 00:16 75-09-2 Alethyl-2-pentanone (MIBK) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-10-1 Methylene-Chloride ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 103-65-1 Naphthalene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 103-65-1 Styrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 103-65-1 Styrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 630-20-6 1,1,2.2-Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 630-20-6 1,1,2.2-Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 78-45-5 Totichorobenzene ND ug/kg 7.2 1 09/10/21 12:									
Methylene Chloride ND ug/kg 28.9 1 09/10/21 12:25 09/11/21 00:16 75-09-2 4-Methyl-z-pentanone (MIBK) ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 1634-04-4 Naphthalene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 1634-04-4 Naphthalene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:40-4 Styrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 10:42-5 1,1,2-Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 12:18-4 Toluene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 10:16 18-88-3 1,2,4-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 10:16 16-20-3 1,1,2-Trichloroethane ND ug/kg 7.2 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
44-Meithyl-2-pentanone (MIBK) ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 1634-04-4 Methyl-tert-butyl ether ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 91-20-31 n-Propylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 91-20-31 Styrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 0:16 630-20-6 1,1,2.2-Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 0:16 73-45 Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 0:16 78-44 Toluene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 0:16 78-44 Toluene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 0:16 78-44 1,2.4-Trichlorobenzene ND ug/kg 7.2 1									
Methyl-tert-butyl ether ND ug/rg 7.2 1 09/10/21 12:25 09/11/21 00:16 1634-04-4 Naphthalene ND ug/rg 7.2 1 09/10/21 12:25 09/11/21 00:16 1634-04-4 Naphthalene ND ug/rg 7.2 1 09/10/21 12:25 09/11/21 00:16 103-65-1 Styrene ND ug/rg 7.2 1 09/10/21 12:25 09/11/21 00:16 630-20-6 1,1,2-Tetrachloroethane ND ug/rg 7.2 1 09/10/21 12:25 09/11/21 00:16 73-45 Tetrachloroethane ND ug/rg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-88-3 1,2,3-Trichlorobenzene ND ug/rg 7.2 1 09/10/21 12:25 09/11/21 00:16 12.8-8:1 1,1,1-Trichlorobenzene ND ug/rg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-6 1,1,2-Trichlorobenzene ND ug/rg 7.2	-								
Naphthalene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 91-20-3 h-Propylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 103-65:1 Styrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 103-45:1 Styrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 73-45:5 Tetrachloroethene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 73-45:5 Tetrachloroethene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 73-44:5 Tollene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 73-45:5 Tolloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 73-01:6 75									
Propylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 103-65-1 Styrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 100-42-5 1,1,2,2-Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 630-20-6 1,1,2,2-Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-34-5 Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 76-81-6 1,2,3-Trichlorobenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-61-6 1,2,4-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-69-4 1,1,2-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21									
Styrene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 00:42-5 1, 1, 2, 2-Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 63:0-20-6 1, 1, 2, 2-Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-34-5 Fetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 17-84 Foluene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 12-84:21 1, 2,4-Trichlorobenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-64 1, 1,2-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-64 1, 1,2-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21	•								
ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 630-20-6 1,1,2,2-Tetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-34-5 Fetrachloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 12:4-7 Foluene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 12:8-8-3 1,2,3-Trichlorobenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 12:0-82-1 1,1,1-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-05 Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-05 Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 63-64 1,2,4-Trimethylbenzene ND ug/kg 7.2 1 09/10/21									
ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-34-5 Fetrachloroethene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 127-18-4 Foluene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 87-61-6 1,2,3-Trichlorobenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 87-61-6 1,2,4-Trichlorobenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 71-55-6 1,1,1-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 72-82-7 1,1,2-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-66-4 1,2,3-Trichloroptopane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-6-6-6 1,3,5-Trimethylbenzene ND ug/kg 7.2 1	5								
TetrachloroetheneNDug/kg7.2109/10/2112:2509/11/2100:16127-18-4FolueneNDug/kg7.2109/10/2112:2509/11/2100:16108-88-31,2,3-TrichlorobenzeneNDug/kg7.2109/10/2112:2509/11/2100:1687-61-61,2,4-TrichlorobenzeneNDug/kg7.2109/10/2112:2509/11/2100:1687-61-61,2,4-TrichloroethaneNDug/kg7.2109/10/2112:2509/11/2100:1671-65-61,1,1-TrichloroethaneNDug/kg7.2109/10/2112:2509/11/2100:1679-01-51,1,1-TrichloroethaneNDug/kg7.2109/10/2112:2509/11/2100:1679-01-61,2,3-TrichloropropaneNDug/kg7.2109/10/2112:2509/11/2100:1675-69-41,2,4-TrimethylbenzeneNDug/kg7.2109/10/2112:2509/11/2100:1686-781,3,5-TrimethylbenzeneNDug/kg7.2109/10/2112:2509/11/2100:1618-67-81,3,5-TrimethylbenzeneNDug/kg7.2109/10/2112:2509/11/2100:1618-67-81,3,6-TrimethylbenzeneNDug/kg7.2109/10/2112:2509/11/2100:16130-20-71,3,6-TrimethylbenzeneNDug/kg14.41 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
TolueneNDug/kg7.2109/10/2112:2509/11/2100:16108-88-31,2,3-TrichlorobenzeneNDug/kg7.2109/10/2112:2509/11/2100:1687-61-61,2,4-TrichlorobenzeneNDug/kg7.2109/10/2112:2509/11/2100:1674-55-61,1,1-TrichlorobentaneNDug/kg7.2109/10/2112:2509/11/2100:1674-55-61,1,2-TrichlorobethaneNDug/kg7.2109/10/2112:2509/11/2100:1679-01-6TrichlorobethaneNDug/kg7.2109/10/2112:2509/11/2100:1675-69-41,2,3-TrichloroptopaneNDug/kg7.2109/10/2112:2509/11/2100:1695-63-61,3,5-TrimethylbenzeneNDug/kg7.2109/10/2112:2509/11/2100:16108-67-8Vinyl acetateNDug/kg7.2109/10/2112:2509/11/2100:16108-67-8Vinyl chlorideNDug/kg7.2109/10/2112:2509/11/2100:16108-67-8Vinyl chlorideNDug/kg7.2109/10/2112:2509/11/2100:16108-67-8Vinyl chlorideNDug/kg7.2109/10/2112:2509/11/2100:16130-20-7NDug/kg14.4109/10/2112:2509/11/2100		ND			1	09/10/21 12:25	09/11/21 00:16	79-34-5	
1,2,3-Trichlorobenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 87-61-6 1,2,4-Trichlorobenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 120-82-1 1,1,1-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 71-55-6 1,1,2-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-00-5 Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-69-4 1,2,3-Trichloroptopane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-63-6 1,2,3-Trichloroptopane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-63-6 1,3,5-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 168-67-8 /inyl acetate ND ug/kg	Tetrachloroethene	ND	ug/kg	7.2	1	09/10/21 12:25	09/11/21 00:16	127-18-4	
ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 120-82-1 1,1,1-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 71-55-6 1,1,2-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-00-5 Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-01-6 Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-69-4 1,2,3-Trichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-63-6 1,2,3-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 /inyl acetate ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 130-20-7 Mg-bxylene ND ug/kg 14.4 1 09/10/21	Toluene	ND	ug/kg	7.2	1	09/10/21 12:25	09/11/21 00:16	108-88-3	
ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 71-55-6 1,1,2-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-00-5 Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-01-6 Trichlorofluoromethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-69-4 1,2,3-Trichloroptopane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-63-6 1,3,5-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-63-6 1,3,5-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 158-67-8 Vinyl chloride ND ug/kg 14.4 1 09/10/21 12:25 09/	1,2,3-Trichlorobenzene	ND	ug/kg	7.2	1	09/10/21 12:25	09/11/21 00:16	87-61-6	
1,1,2-Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-00-5 Trichloroethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-01-6 Trichlorofluoromethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-69-4 1,2,3-Trichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-63-6 1,3,5-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 m&p-Xylene ND ug/kg 7.2 <td< td=""><td>1,2,4-Trichlorobenzene</td><td>ND</td><td>ug/kg</td><td>7.2</td><td>1</td><td>09/10/21 12:25</td><td>09/11/21 00:16</td><td>120-82-1</td><td></td></td<>	1,2,4-Trichlorobenzene	ND	ug/kg	7.2	1	09/10/21 12:25	09/11/21 00:16	120-82-1	
ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 79-01-6 Trichlorofluoromethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-69-4 1,2,3-Trichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-69-4 1,2,3-Trichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-63-6 1,3,5-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 75-01-4 Kylene (Total) ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 130-20-7 Surrogates ND ug/kg 7.2 1 09/10/21	1,1,1-Trichloroethane	ND	ug/kg	7.2	1	09/10/21 12:25	09/11/21 00:16	71-55-6	
Trichlorofluoromethane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-69-4 1,2,3-Trichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 75-69-4 1,2,3-Trichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-63-6 1,3,5-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-05-4 Vinyl chloride ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 MS ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 Surrogates ND ug/kg 7.2 1 09/10/21 </td <td>1,1,2-Trichloroethane</td> <td>ND</td> <td>ug/kg</td> <td>7.2</td> <td>1</td> <td>09/10/21 12:25</td> <td>09/11/21 00:16</td> <td>79-00-5</td> <td></td>	1,1,2-Trichloroethane	ND	ug/kg	7.2	1	09/10/21 12:25	09/11/21 00:16	79-00-5	
1,2,3-Trichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 96-18-4 1,2,4-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-63-6 1,3,5-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 75-01-4 Vinyl chloride ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 m&p-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 o-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 2037-26-5 Surrogates Toluene-d8 (S) 97 % 70-130	Trichloroethene	ND		7.2	1	09/10/21 12:25	09/11/21 00:16	79-01-6	
1,2,3-Trichloropropane ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 96-18-4 1,2,4-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-63-6 1,3,5-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 vinyl acetate ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 vinyl acetate ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 75-01-4 Vinyl chloride ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 m&p-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 o-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 2037-26-5 Surrogates Toluene-d8 (S) 97 % 70-130	Trichlorofluoromethane	ND	ug/kg	7.2	1	09/10/21 12:25	09/11/21 00:16	75-69-4	
ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-63-6 1,3,5-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 108-05-4 Vinyl acetate ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 75-01-4 Xylene (Total) ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 m&p-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 o-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 179601-23-1 o-Xylene ND ug/kg 7.2 1 09/10/21 12:25	1,2,3-Trichloropropane	ND		7.2	1	09/10/21 12:25	09/11/21 00:16	96-18-4	
1,3,5-Trimethylbenzene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 108-67-8 Vinyl acetate ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 108-05-4 Vinyl chloride ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 Msp-Xylene (Total) ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 17601-23-1 o-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 17601-23-1 o-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-47-6 Surrogates Toluene-d8 (S) 97 % 70-130 1 09/10/21 12:25 09/11/21 00:16 460-00-4 1,2-Dichloroethane-d4 (S) 90 % 70-1				7.2	1	09/10/21 12:25	09/11/21 00:16	95-63-6	
Vinyl acetate ND ug/kg 72.2 1 09/10/21 12:25 09/11/21 00:16 108-05-4 Vinyl chloride ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 75-01-4 Xylene (Total) ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 m&p-Xylene ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 o-Xylene ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 179601-23-1 o-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-47-6 Surrogates Toluene-d8 (S) 97 % 70-130 1 09/10/21 12:25 09/11/21 00:16 2037-26-5 4-Bromofluorobenzene (S) 95 % 69-134 1 09/10/21 12:25 09/11/21 00:16 460-00-4 1,2-Dichloroethane-d4 (S) 90 % 70-130 <td>-</td> <td></td> <td></td> <td></td> <td>1</td> <td>09/10/21 12:25</td> <td>09/11/21 00:16</td> <td>108-67-8</td> <td></td>	-				1	09/10/21 12:25	09/11/21 00:16	108-67-8	
Vin/l chloride ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 75-01-4 Xylene (Total) ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 m&p-Xylene ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 179601-23-1 o-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-47-6 Surrogates Toluene-d8 (S) 97 % 70-130 1 09/10/21 12:25 09/11/21 00:16 2037-26-5 4-Bromofluorobenzene (S) 95 % 69-134 1 09/10/21 12:25 09/11/21 00:16 460-00-4 1,2-Dichloroethane-d4 (S) 90 % 70-130 1 09/10/21 12:25 09/11/21 00:16 17060-07-0 Percent Moisture Analytical Method: SW-846 Pace Analytical Services - Charlotte Pace Analytical Services - Charlotte Vi/vi/vi/vi/vi/vi/vi/vi/vi/vi/vi/vi/vi/vi	-								
ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 m&p-Xylene ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 1330-20-7 o-Xylene ND ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 179601-23-1 o-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-47-6 Surrogates I 09/10/21 12:25 09/11/21 00:16 2037-26-5 Toluene-d8 (S) 97 % 69-134 1 09/10/21 12:25 09/11/21 00:16 2037-26-5 4-Bromofluorobenzene (S) 95 % 69-134 1 09/10/21 12:25 09/11/21 00:16 460-00-4 1,2-Dichloroethane-d4 (S) 90 % 70-130 1 09/10/21 12:25 09/11/21 00:16 17060-07-0 Percent Moisture Analytical Method: SW-846 Pace Analytical Services - Charlotte Pace Analytical Services - Charlotte Image: Services - Charlotte	-								
MB ug/kg 14.4 1 09/10/21 12:25 09/11/21 00:16 179601-23-1 o-Xylene ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 9547-6 Surrogates Toluene-d8 (S) 97 % 70-130 1 09/10/21 12:25 09/11/21 00:16 2037-26-5 4-Bromofluorobenzene (S) 95 % 69-134 1 09/10/21 12:25 09/11/21 00:16 2037-26-5 4-Bromofluorobenzene (S) 95 % 69-134 1 09/10/21 12:25 09/11/21 00:16 460-00-4 1,2-Dichloroethane-d4 (S) 90 % 70-130 1 09/10/21 12:25 09/11/21 00:16 17060-07-0 Percent Moisture Analytical Method: SW-846 Pace Analytical Services - Charlotte Value Value <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
ND ug/kg 7.2 1 09/10/21 12:25 09/11/21 00:16 95-47-6 Surrogates Toluene-d8 (S) 97 % 70-130 1 09/10/21 12:25 09/11/21 00:16 2037-26-5 4-Bromofluorobenzene (S) 95 % 69-134 1 09/10/21 12:25 09/11/21 00:16 460-00-4 1,2-Dichloroethane-d4 (S) 90 % 70-130 1 09/10/21 12:25 09/11/21 00:16 17060-07-0 Percent Moisture Analytical Method: SW-846 Pace Analytical Services - Charlotte Pace Analytical Services - Charlotte Pace Analytical Services - Charlotte	,								
Surrogates 70-130 09/10/21 12:25 09/11/21 00:16 2037-26-5 4-Bromofluorobenzene (S) 95 % 69-134 1 09/10/21 12:25 09/11/21 00:16 460-00-4 1,2-Dichloroethane-d4 (S) 90 % 70-130 1 09/10/21 12:25 09/11/21 00:16 17060-07-0 Percent Moisture Analytical Method: SW-846 Pace Analytical Services - Charlotte Pace Analytical Services - Charlotte 90 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Toluene-d8 (S) 97 % 70-130 1 09/10/21 12:25 09/11/21 00:16 2037-26-5 4-Bromofluorobenzene (S) 95 % 69-134 1 09/10/21 12:25 09/11/21 00:16 460-00-4 1,2-Dichloroethane-d4 (S) 90 % 70-130 1 09/10/21 12:25 09/11/21 00:16 460-00-4 Percent Moisture Analytical Method: SW-846 Pace Analytical Services - Charlotte V <td>•</td> <td>ND</td> <td>ug/kg</td> <td>1.2</td> <td></td> <td>00/10/21 12:20</td> <td>00/11/21 00.10</td> <td>55-47-0</td> <td></td>	•	ND	ug/kg	1.2		00/10/21 12:20	00/11/21 00.10	55-47-0	
4-Bromofluorobenzene (S) 95 % 69-134 1 09/10/21 12:25 09/11/21 00:16 460-00-4 1,2-Dichloroethane-d4 (S) 90 % 70-130 1 09/10/21 12:25 09/11/21 00:16 17060-07-0 Percent Moisture Analytical Method: SW-846 Pace Analytical Services - Charlotte Pace Analytical Services - Charlotte		97	%	70-130	1	09/10/21 12:25	09/11/21 00.16	2037-26-5	
1,2-Dichloroethane-d4 (S) 90 % 70-130 1 09/10/21 12:25 09/11/21 00:16 17060-07-0 Percent Moisture Analytical Method: SW-846 Pace Analytical Services - Charlotte									
Pace Analytical Services - Charlotte									
Pace Analytical Services - Charlotte	Percent Moisture	Analytical Met	hod: SW-846	3					
		-							
CENERIC 23.7 /0 UTU 1 U9/09/211310 NZ	Percent Moisture	23.9	%	0.10	1		09/09/21 13:18		N2

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Nordt Property

Pace Project No.: 92560200

Sample: SB-06	Lab ID: 925		Collected: 09/08/2				latrix: Solid	
Results reported on a "dry weigh	Results	-		-	-		CAS No.	Qual
Parameters		Units	Report Limit	DF	Prepared	Analyzed		Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10D Preparation Me	ethod: E	EPA 3050B			
	Pace Analytica	I Services -	Asheville					
Arsenic	35.5	mg/kg	2.8	1	09/10/21 10:18	09/15/21 17:40	7440-38-2	
Barium	18.4	mg/kg	1.1	1		09/15/21 17:40		
Cadmium	0.39	mg/kg	0.11	1		09/15/21 17:40		
Chromium	30.1	mg/kg	0.56	1		09/15/21 17:40		
Lead	17.0	mg/kg	1.1	1		09/15/21 17:40		
Selenium	2.3	mg/kg	1.1	1		09/15/21 17:40		
Silver	ND	mg/kg	2.8	5		09/16/21 11:12		
7474 Moroum	Applytical Mat		71B Preparation Me	thad E				
7471 Mercury	Pace Analytica			uiou. L				
N 4	5					00/05/04 40 45	7400 07 0	
Mercury	0.17	mg/kg	0.0078	1	09/25/21 14:32	09/25/21 16:47	7439-97-6	
8260D/5035A/5030B Volatiles	Analytical Meth	nod: EPA 82	60D Preparation Me	ethod: E	EPA 5035A/5030B	3		
	Pace Analytica	l Services -	Charlotte					
Acetone	ND	ug/kg	154	1	00/10/21 12:25	09/11/21 00:34	67 64 1	
Benzene	ND	ug/kg ug/kg	7.7	1		09/11/21 00:34		
Bromobenzene	ND		7.7	1		09/11/21 00:34		
Bromochloromethane	ND	ug/kg	7.7	1		09/11/21 00:34		
		ug/kg	7.7			09/11/21 00:34		
Bromodichloromethane Bromoform	ND	ug/kg	7.7	1 1				
	ND	ug/kg	15.4			09/11/21 00:34		
Bromomethane	ND	ug/kg		1		09/11/21 00:34		
2-Butanone (MEK) n-Butylbenzene	ND	ug/kg	154	1		09/11/21 00:34		
-	ND	ug/kg	7.7 7.7	1		09/11/21 00:34		
sec-Butylbenzene	ND	ug/kg		1		09/11/21 00:34		
tert-Butylbenzene Carbon tetrachloride	ND	ug/kg	7.7 7.7	1		09/11/21 00:34		
	ND	ug/kg	7.7	1		09/11/21 00:34		
Chlorobenzene	ND	ug/kg		1		09/11/21 00:34		
Chloroethane Chloroform	ND	ug/kg	15.4 7.7	1 1		09/11/21 00:34		
Chloromethane	ND ND	ug/kg	15.4	1		09/11/21 00:34 09/11/21 00:34		
2-Chlorotoluene	ND	ug/kg	7.7	1		09/11/21 00:34		
4-Chlorotoluene	ND	ug/kg	7.7	1		09/11/21 00:34		
1,2-Dibromo-3-chloropropane	ND	ug/kg	7.7	1		09/11/21 00:34		
	ND	ug/kg	7.7	1		09/11/21 00:34		
Dibromochloromethane	ND	ug/kg	7.7	1		09/11/21 00:34		
1,2-Dibromoethane (EDB)		ug/kg						
Dibromomethane 1,2-Dichlorobenzene	ND ND	ug/kg	7.7 7.7	1 1		09/11/21 00:34 09/11/21 00:34		
1,3-Dichlorobenzene	ND	ug/kg	7.7	1		09/11/21 00:34		
1,4-Dichlorobenzene	ND	ug/kg	7.7	1		09/11/21 00:34		
Dichlorodifluoromethane	ND	ug/kg	15.4	1		09/11/21 00:34		v2
1,1-Dichloroethane	ND	ug/kg ug/kg	7.7	1		09/11/21 00:34		٧Z
-						09/11/21 00:34		
1,2-Dichloroethane	ND	ug/kg	7.7	1				
1,1-Dichloroethene cis-1,2-Dichloroethene	ND	ug/kg	7.7	1		09/11/21 00:34		
-	ND	ug/kg	7.7	1		09/11/21 00:34		
trans-1,2-Dichloroethene	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	156-60-5	

Project: Nordt Property

Pace Project No.: 92560200

Sample: SB-06	Lab ID: 925	60200006	Collected: 09/08/2	21 11:3	0 Received: 09	0/09/21 10:00 N	/atrix: Solid	
Results reported on a "dry weight" k	asis and are adj	usted for p	ercent moisture, sa	ample s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D/5035A/5030B Volatiles	Analytical Meth	nod: EPA 82	60D Preparation Me	ethod: I	EPA 5035A/5030B			
	Pace Analytica	l Services -	Charlotte					
1,2-Dichloropropane	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	78-87-5	
1,3-Dichloropropane	ND	ug/kg	7.7	1			142-28-9	
2,2-Dichloropropane	ND	ug/kg	7.7	1		09/11/21 00:34		
1,1-Dichloropropene	ND	ug/kg	7.7	1		09/11/21 00:34		
cis-1,3-Dichloropropene	ND	ug/kg	7.7	1		09/11/21 00:34	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	7.7	1		09/11/21 00:34	10061-01-5	
Diisopropyl ether	ND	ug/kg ug/kg	7.7	1		09/11/21 00:34	108-20-3	
Ethylbenzene	ND	ug/kg ug/kg	7.7	1		09/11/21 00:34	100-20-3	
Hexachloro-1,3-butadiene	ND		15.4	1		09/11/21 00:34		
2-Hexanone	ND	ug/kg	77.1	1		09/11/21 00:34		
		ug/kg						
Isopropylbenzene (Cumene)	ND	ug/kg	7.7	1		09/11/21 00:34		
p-Isopropyltoluene	ND	ug/kg	7.7	1		09/11/21 00:34		
Methylene Chloride	ND	ug/kg	30.8	1		09/11/21 00:34		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	77.1	1		09/11/21 00:34		
Methyl-tert-butyl ether	ND	ug/kg	7.7	1		09/11/21 00:34		
Naphthalene	ND	ug/kg	7.7	1		09/11/21 00:34		
n-Propylbenzene	ND	ug/kg	7.7	1		09/11/21 00:34		
Styrene	ND	ug/kg	7.7	1		09/11/21 00:34	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	7.7	1		09/11/21 00:34		
1,1,2,2-Tetrachloroethane	ND	ug/kg	7.7	1		09/11/21 00:34		
Tetrachloroethene	ND	ug/kg	7.7	1		09/11/21 00:34		
Toluene	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	79-00-5	
Trichloroethene	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	79-01-6	
Trichlorofluoromethane	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	7.7	1	09/10/21 12:25	09/11/21 00:34	108-67-8	
Vinyl acetate	ND	ug/kg	77.1	1			108-05-4	
Vinyl chloride	ND	ug/kg	15.4	1		09/11/21 00:34		
Xylene (Total)	ND	ug/kg	15.4	1		09/11/21 00:34		
m&p-Xylene	ND	ug/kg	15.4	1		09/11/21 00:34		
o-Xylene	ND	ug/kg	7.7	1		09/11/21 00:34		
Surrogates	ND	ug/ng	1.1		00/10/21 12:20	00/11/21 00:04	55-47-0	
Toluene-d8 (S)	97	%	70-130	1	09/10/21 12:25	09/11/21 00:34	2037-26-5	
4-Bromofluorobenzene (S)	97	%	69-134	1		09/11/21 00:34		
1,2-Dichloroethane-d4 (S)	89	%	70-130	1		09/11/21 00:34		
Percent Moisture	Analytical Meth	nod: SW-846	6					
	Pace Analytica							
	27.5	%	0.10	1		09/09/21 13:40		N2

Project: Nordt Propert	y										
Pace Project No.: 92560200											
QC Batch: 648560			Analys	is Method	: E	PA 7471B					
QC Batch Method: EPA 7471B			Analys	is Descrip	tion: 7	471 Mercury	1				
			Labora	atory:	F	Pace Analytic	al Service	s - Asheville	9		
Associated Lab Samples: 9256	0200003, 9	2560200004									
METHOD BLANK: 3401569			N	latrix: Sol	lid						
Associated Lab Samples: 9256	0200003, 9	2560200004									
			Blank	: F	Reporting						
Parameter		Units	Resul	t	Limit	Analyz	ed	Qualifiers	_		
Mercury		mg/kg		ND	0.060	09/23/21	12:54				
LABORATORY CONTROL SAMPI	_E: 3401	570									
			Spike	LCS	3	LCS	% Re	с			
Parameter		Units	Conc.	Resu	ult	% Rec	Limits	s Qi	ualifiers		
Mercury		mg/kg	0.083		0.92	1110	80	0-120			
			74		2404570						
MATRIX SPIKE & MATRIX SPIKE	DUPLICAT	E: 34015	MS	MSD	3401572						
	92	559778001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Mercury	mg/kg	ND	0.085	0.081	0.078	0.091	92	112	75-125	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Nordt Proper	ſy										
Pace Project No.: 92560200											
QC Batch: 649265			Analys	is Method:	E	PA 7471B					
QC Batch Method: EPA 7471B			Analys	is Descript	ion: 74	471 Mercury					
			Labora	tory:	P	ace Analytic	al Services	s - Ashevill	е		
Associated Lab Samples: 9256	0200005, 92	2560200006									
METHOD BLANK: 3405549			N	latrix: Soli	d						
Associated Lab Samples: 9256	0200005, 92	2560200006									
			Blank	Re	eporting						
Parameter		Units	Result	t	Limit	Analyz	ed	Qualifiers			
Mercury	r	mg/kg		ND	0.0060	09/25/21	16:33				
			Spike	ND		09/25/21	16:33 % Rec				
	LE: 34055		Spike Conc.						ualifiers		
LABORATORY CONTROL SAMP	LE: 34055	550	•	LCS Resu		LCS	% Rec Limits		ualifiers		
LABORATORY CONTROL SAMP Parameter	LE: 34055	50 Units mg/kg	Conc. 0.083	LCS Resu	lt	LCS % Rec	% Rec Limits	s C	ualifiers		
LABORATORY CONTROL SAMP Parameter Mercury	LE: 34055	550 Units mg/kg E: 340555	Conc. 0.083	LCS Resu	lt 0.083 3405552	LCS % Rec 99	% Rec Limits 80	s C 0-120			
LABORATORY CONTROL SAMP Parameter Mercury MATRIX SPIKE & MATRIX SPIKE	LE: 34055 r DUPLICATE 925	550 Units mg/kg E: 340555	51 MS Spike	LCS Resul	lt 0.083 3405552 MS	LCS % Rec 99	% Rec Limits 80	s C)-120 MSD	% Rec		
LABORATORY CONTROL SAMP Parameter Mercury	LE: 34055	550 Units mg/kg E: 340555	51 MS	LCS Resul	lt 0.083 3405552	LCS % Rec 99	% Rec Limits 80	s C 0-120		RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Nordt	Property										
Pace Project No.:	92560	200										
QC Batch:	6463	30		Analys	sis Method:	FI	PA 6010D					
QC Batch Method:		3050B		-	sis Descripti		010 MET					
QO Baton Method.		00000		Labora	•			al Services	s - Asheville			
Associated Lab Sa	amples:	92560200003,	92560200004						- Ashevine			
METHOD BLANK:	33902	21		Ν	Matrix: Soli	d						
Associated Lab Sa	amples:	92560200003,	92560200004	, 92560200	005, 92560	200006						
				Blank	c Re	eporting						
Para	ameter		Units	Resu	t	Limit	Analyz	zed	Qualifiers			
Arsenic			mg/kg		ND	2.5	09/15/21	14:10		_		
Barium			mg/kg		ND	1.0	09/15/21	14:10				
Cadmium			mg/kg		ND	0.10	09/15/21	16:40				
Chromium			mg/kg		ND	0.50	09/15/21					
_ead			mg/kg		ND	1.0	09/15/21					
Selenium			mg/kg		ND	1.0	09/15/21					
Silver			mg/kg		ND	0.50	09/15/21	14:10				
LABORATORY CO	ONTROL	SAMPLE: 339	90222	Spike	LCS		LCS	% Re				
Para	ameter		Units	Conc.	Resu	t	% Rec	Limits	s Qu	alifiers		
Arsenic			mg/kg	5		4.6	92	80)-120			
Barium			mg/kg	5	i	4.9	98	80)-120			
Cadmium			mg/kg	5		4.7	94)-120			
Chromium			mg/kg	5		4.8	96)-120			
Lead			mg/kg	5		4.8	96)-120			
Selenium Silver			mg/kg mg/kg	5 2.5		4.2 2.3	84 90)-120)-120			
MATRIX SPIKE &	MATRIX	SPIKE DUPLIC	ATE: 339022			3390224						
				MS	MSD							
_			92559902001	Spike	Spike	MS	MSD	MS	MSD	% Rec		. .
Param	eter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic		mg/kg		0.48	0.49	ND	ND	-2430	-2380	75-125	I	M1
Barium		mg/kg		0.48	0.49	1.8	2.8	-170000	-166000	75-125	46 I	M1,R1
Cadmium		mg/kg		0.48	0.49	0.45	0.53	-5220	-5110	75-125	15 I	
Chromium		mg/kg		0.48	0.49	124		-6810000	-6690000	75-125		E,R1
Lead		mg/kg		0.48	0.49	2.3	6.2	-352000	-345000	75-125		M1,R1
		ma m// cm	. 57	0 40			0 00	4440	1110	75 105	11 1	111
Selenium Silver		mg/kg mg/kg		0.48 0.24	0.49 0.25	0.26 0.26	0.29 0.26	-1140 -1180	-1110 -1150	75-125 75-125	11 I 3 I	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	Nordt F	Property				
Pace Project No.:	925602					
QC Batch:	64643	31	Analysis Method:	FF	PA 8260D	
QC Batch Method:		5035A/5030B	Analysis Description:		260D 5035A 5030B	
QO Bateri Metriod.		000700000				charlatta
		005000001 005000000	Laboratory:		ace Analytical Servio	
Associated Lab Sam	ipies:	92560200001, 9256020000	2, 92560200003, 92560200	004, 92	2560200005, 92560	200006
METHOD BLANK:	339089)4	Matrix: Solid			
Associated Lab Sam	ples:	92560200001, 9256020000	2, 92560200003, 92560200	004, 92	2560200005, 92560	200006
			Blank Repor	ting		
Param	neter	Units	Result Lim	-	Analyzed	Qualifiers
1,1,1,2-Tetrachloroe	thane	ug/kg	ND	5.0	09/10/21 16:16	
1,1,1-Trichloroethan		ug/kg	ND	5.0	09/10/21 16:16	
1,1,2,2-Tetrachloroe		ug/kg	ND	5.0	09/10/21 16:16	
1,1,2-Trichloroethan		ug/kg	ND	5.0	09/10/21 16:16	
1,1-Dichloroethane		ug/kg	ND	5.0	09/10/21 16:16	
1,1-Dichloroethene		ug/kg	ND	5.0	09/10/21 16:16	
1,1-Dichloropropene)	ug/kg	ND	5.0	09/10/21 16:16	
1,2,3-Trichlorobenze		ug/kg	ND	5.0	09/10/21 16:16	
1,2,3-Trichloropropa		ug/kg	ND	5.0	09/10/21 16:16	
1,2,4-Trichlorobenze		ug/kg	ND	5.0	09/10/21 16:16	
1,2,4-Trimethylbenz		ug/kg	ND	5.0	09/10/21 16:16	
1,2-Dibromo-3-chlor			ND	5.0	09/10/21 16:16	
1,2-Dibromoethane		ug/kg	ND	5.0	09/10/21 16:16	
1.2-Dichlorobenzene	· /	ug/kg	ND	5.0	09/10/21 16:16	
1,2-Dichloroethane		ug/kg	ND	5.0	09/10/21 16:16	
1,2-Dichloropropane		ug/kg	ND	5.0	09/10/21 16:16	
1,3,5-Trimethylbenz		ug/kg	ND	5.0	09/10/21 16:16	
1,3-Dichlorobenzene		ug/kg	ND	5.0	09/10/21 16:16	
1,3-Dichloropropane		ug/kg	ND	5.0	09/10/21 16:16	
1,4-Dichlorobenzene		ug/kg	ND	5.0	09/10/21 16:16	
2,2-Dichloropropane		ug/kg	ND	5.0	09/10/21 16:16	
2-Butanone (MEK)	•	ug/kg	ND	100	09/10/21 16:16	
2-Chlorotoluene		ug/kg	ND	5.0	09/10/21 16:16	
2-Hexanone		ug/kg	ND	50.0	09/10/21 16:16	
4-Chlorotoluene		ug/kg	ND	5.0	09/10/21 16:16	
4-Methyl-2-pentanor	ne (MIR		ND	50.0	09/10/21 16:16	
Acetone	.5 (1010)	ug/kg	ND	100	09/10/21 16:16	
Benzene		ug/kg	ND	5.0	09/10/21 16:16	
Bromobenzene		ug/kg	ND	5.0	09/10/21 16:16	
Bromochloromethan	e	ug/kg	ND	5.0	09/10/21 16:16	
Bromodichlorometha		ug/kg	ND	5.0	09/10/21 16:16	
Bromoform		ug/kg	ND	5.0	09/10/21 16:16	
Bromomethane		ug/kg	ND	10.0	09/10/21 16:16	
Carbon tetrachloride	•	ug/kg	ND	5.0	09/10/21 16:16	
Chlorobenzene		ug/kg	ND	5.0	09/10/21 16:16	
Chloroethane		ug/kg	ND	10.0	09/10/21 16:16	
Chloroform		ug/kg	ND	5.0	09/10/21 16:16	
Chloromethane		ug/kg	ND	10.0	09/10/21 16:16	
cis-1,2-Dichloroethe	ne	ug/kg	ND	5.0	09/10/21 16:16	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Nordt Property
Pace Proiect No.:	92560200

METHOD BLANK: 3390894		Matrix: S	Solid		
Associated Lab Samples: 925602	00001, 92560200002	2, 92560200003, 92	560200004, 92	560200005, 9256	0200006
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromochloromethane	ug/kg	ND	5.0	09/10/21 16:16	
Dibromomethane	ug/kg	ND	5.0	09/10/21 16:16	
Dichlorodifluoromethane	ug/kg	ND	10.0	09/10/21 16:16	v2
Diisopropyl ether	ug/kg	ND	5.0	09/10/21 16:16	
Ethylbenzene	ug/kg	ND	5.0	09/10/21 16:16	
Hexachloro-1,3-butadiene	ug/kg	ND	10.0	09/10/21 16:16	
lsopropylbenzene (Cumene)	ug/kg	ND	5.0	09/10/21 16:16	
m&p-Xylene	ug/kg	ND	10.0	09/10/21 16:16	
Methyl-tert-butyl ether	ug/kg	ND	5.0	09/10/21 16:16	
Methylene Chloride	ug/kg	ND	20.0	09/10/21 16:16	
n-Butylbenzene	ug/kg	ND	5.0	09/10/21 16:16	
n-Propylbenzene	ug/kg	ND	5.0	09/10/21 16:16	
Naphthalene	ug/kg	ND	5.0	09/10/21 16:16	
o-Xylene	ug/kg	ND	5.0	09/10/21 16:16	
p-Isopropyltoluene	ug/kg	ND	5.0	09/10/21 16:16	
sec-Butylbenzene	ug/kg	ND	5.0	09/10/21 16:16	
Styrene	ug/kg	ND	5.0	09/10/21 16:16	
ert-Butylbenzene	ug/kg	ND	5.0	09/10/21 16:16	
Tetrachloroethene	ug/kg	ND	5.0	09/10/21 16:16	
Toluene	ug/kg	ND	5.0	09/10/21 16:16	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	09/10/21 16:16	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	09/10/21 16:16	
Trichloroethene	ug/kg	ND	5.0	09/10/21 16:16	
Trichlorofluoromethane	ug/kg	ND	5.0	09/10/21 16:16	
√inyl acetate	ug/kg	ND	50.0	09/10/21 16:16	
/inyl chloride	ug/kg	ND	10.0	09/10/21 16:16	
Kylene (Total)	ug/kg	ND	10.0	09/10/21 16:16	
1,2-Dichloroethane-d4 (S)	%	102	70-130	09/10/21 16:16	
4-Bromofluorobenzene (S)	%	99	69-134	09/10/21 16:16	
Toluene-d8 (S)	%	99	70-130	09/10/21 16:16	

LABORATORY CONTROL SAMPLE: 3390895

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	1250	1360	109	70-130	
1,1,1-Trichloroethane	ug/kg	1250	1070	86	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	1250	1250	100	70-130	
1,1,2-Trichloroethane	ug/kg	1250	1130	90	70-130	
1,1-Dichloroethane	ug/kg	1250	1190	95	70-130	
1,1-Dichloroethene	ug/kg	1250	1260	101	70-130	
1,1-Dichloropropene	ug/kg	1250	1230	98	70-130	
1,2,3-Trichlorobenzene	ug/kg	1250	1450	116	65-130	
1,2,3-Trichloropropane	ug/kg	1250	1310	104	70-130	
1,2,4-Trichlorobenzene	ug/kg	1250	1420	113	68-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Nordt Property Pace Project No.: 92560200

895

LABORATORY CONTROL SAMPLE:	3390895					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
,2,4-Trimethylbenzene	ug/kg	1250	1310	105	70-130	
2-Dibromo-3-chloropropane	ug/kg	1250	1390	111	70-130	
2-Dibromoethane (EDB)	ug/kg	1250	1340	107	70-130	
2-Dichlorobenzene	ug/kg	1250	1430	114	70-130	
-Dichloroethane	ug/kg	1250	1180	94	63-130	
2-Dichloropropane	ug/kg	1250	1260	101	70-130	
3,5-Trimethylbenzene	ug/kg	1250	1340	107	70-130	
3-Dichlorobenzene	ug/kg	1250	1430	115	70-130	
-Dichloropropane	ug/kg	1250	1340	107	70-130	
-Dichlorobenzene	ug/kg	1250	1390	112	70-130	
-Dichloropropane	ug/kg	1250	1220	98	66-130	
utanone (MEK)	ug/kg	2500	2180	87	70-130	
Chlorotoluene	ug/kg	1250	1440	115	70-130	
lexanone	ug/kg	2500	2400	96	70-130	
hlorotoluene	ug/kg	1250	1400	112	70-130	
lethyl-2-pentanone (MIBK)	ug/kg	2500	2270	91	70-130	
etone	ug/kg	2500	2090	83	69-130	
izene	ug/kg	1250	1230	98	70-130	
mobenzene	ug/kg	1250	1460	117	70-130	
nochloromethane	ug/kg	1250	1280	103	70-130	
nodichloromethane	ug/kg	1250	1200	86	69-130	
noform	ug/kg	1250	1310	105	70-130	
nonethane		1250	1190	95	52-130	
oon tetrachloride	ug/kg	1250	1190	101	70-130	
robenzene	ug/kg ug/kg	1250	1200	101	70-130	
proethane		1250	1210	97	65-130	
oroform	ug/kg	1250	1210	99	70-130	
promethane	ug/kg	1250	1230	99 90	55-130	
1,2-Dichloroethene	ug/kg	1250	1120	90 92	70-130	
	ug/kg	1250	1270	92 101	70-130	
l,3-Dichloropropene omochloromethane	ug/kg	1250	1270	110	70-130	
	ug/kg					
romomethane hlorodifluoromethane	ug/kg	1250	1350	108	70-130	0
	ug/kg	1250	1540	123	45-156 v	v3
opropyl ether	ug/kg	1250	1050	84	70-130	
ylbenzene	ug/kg	1250	1250	100	70-130	
achloro-1,3-butadiene	ug/kg	1250	1490	120	66-130	
propylbenzene (Cumene)	ug/kg	1250	1350	108	70-130	
o-Xylene	ug/kg	2500	2640	105	70-130	
hyl-tert-butyl ether	ug/kg	1250	1080	87	70-130	
hylene Chloride	ug/kg	1250	1090	87	65-130	
utylbenzene	ug/kg	1250	1380	110	67-130	
ropylbenzene	ug/kg	1250	1380	111	70-130	
hthalene	ug/kg	1250	1370	110	70-130	
ylene	ug/kg	1250	1350	108	70-130	
sopropyltoluene	ug/kg	1250	1380	111	67-130	
-Butylbenzene	ug/kg	1250	1360	109	69-130	
rene	ug/kg	1250	1360	109	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Nordt Property Pace Project No.: 92560200

LABORATORY CONTROL SAMPLE: 3390895

Devenueter	l lucita	Spike	LCS	LCS	% Rec	Qualifiana
Parameter	Units	Conc	Result	% Rec	Limits	Qualifiers
tert-Butylbenzene	ug/kg	1250	1410	113	67-130	
Tetrachloroethene	ug/kg	1250	1440	115	70-130	
Toluene	ug/kg	1250	1270	101	70-130	
trans-1,2-Dichloroethene	ug/kg	1250	1200	96	70-130	
rans-1,3-Dichloropropene	ug/kg	1250	1250	100	68-130	
Trichloroethene	ug/kg	1250	1350	108	70-130	
Frichlorofluoromethane	ug/kg	1250	1290	103	70-130	
/inyl acetate	ug/kg	2500	2350	94	70-130	
inyl chloride	ug/kg	1250	1200	96	61-130	
(ylene (Total)	ug/kg	3750	3980	106	70-130	
I,2-Dichloroethane-d4 (S)	%			82	70-130	
4-Bromofluorobenzene (S)	%			96	69-134	
Toluene-d8 (S)	%			97	70-130	

MATRIX SPIKE SAMPLE:	3390897						
		92559831002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	922	910	99	70-131	
1,1,1-Trichloroethane	ug/kg	ND	922	800	87	65-133	
1,1,2,2-Tetrachloroethane	ug/kg	ND	922	821	89	66-130	
1,1,2-Trichloroethane	ug/kg	ND	922	777	84	66-133	
1,1-Dichloroethane	ug/kg	ND	922	869	94	65-130	
1,1-Dichloroethene	ug/kg	ND	922	943	102	10-158	
1,1-Dichloropropene	ug/kg	ND	922	950	103	68-133	
1,2,3-Trichlorobenzene	ug/kg	ND	922	1050	114	27-138	
1,2,3-Trichloropropane	ug/kg	ND	922	841	91	67-130	
1,2,4-Trichlorobenzene	ug/kg	ND	922	1050	113	51-134	
1,2,4-Trimethylbenzene	ug/kg	ND	922	956	104	63-136	
1,2-Dibromo-3-chloropropane	ug/kg	ND	922	778	84	32-130	
1,2-Dibromoethane (EDB)	ug/kg	ND	922	879	95	70-130	
1,2-Dichlorobenzene	ug/kg	ND	922	998	108	69-130	
1,2-Dichloroethane	ug/kg	ND	922	852	92	59-130	
1,2-Dichloropropane	ug/kg	ND	922	913	99	70-130	
1,3,5-Trimethylbenzene	ug/kg	ND	922	944	103	65-137	
1,3-Dichlorobenzene	ug/kg	ND	922	1010	109	70-130	
1,3-Dichloropropane	ug/kg	ND	922	905	98	70-130	
1,4-Dichlorobenzene	ug/kg	ND	922	991	108	68-130	
2,2-Dichloropropane	ug/kg	ND	922	819	89	32-130	
2-Butanone (MEK)	ug/kg	ND	1850	1360	74	10-136	
2-Chlorotoluene	ug/kg	ND	922	996	108	69-141	
2-Hexanone	ug/kg	ND	1850	1410	76	10-144	
4-Chlorotoluene	ug/kg	ND	922	961	104	70-132	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	1850	1460	79	25-143	
Acetone	ug/kg	ND	1850	1030	56	10-130	
Benzene	ug/kg	ND	922	927	101	67-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Nordt Property Pace Project No.: 92560200

MATRIX SPIKE SAMPLE:	3390897					
-		92559831002	Spike	MS	MS	% Rec
Parameter	Units	Result	Conc.	Result	% Rec	Limits Qualifie
Bromobenzene	ug/kg	ND	922	990	107	70-130
Bromochloromethane	ug/kg	ND	922	887	96	69-134
Bromodichloromethane	ug/kg	ND	922	728	79	64-130
Bromoform	ug/kg	ND	922	732	79	62-130
Bromomethane	ug/kg	ND	922	314	34	20-176
Carbon tetrachloride	ug/kg	ND	922	901	98	65-140
Chlorobenzene	ug/kg	ND	922	990	107	70-130
Chloroethane	ug/kg	ND	922	98.3	11	10-130
Chloroform	ug/kg	ND	922	886	96	63-130
Chloromethane	ug/kg	ND	922	905	98	58-130
cis-1,2-Dichloroethene	ug/kg	ND	922	859	93	66-130
cis-1,3-Dichloropropene	ug/kg	ND	922	864	94	67-130
Dibromochloromethane	ug/kg	ND	922	817	89	67-130
Dibromomethane	ug/kg	ND	922	927	101	63-131
Dichlorodifluoromethane	ug/kg	ND	922	1140	123	44-180 v3
Diisopropyl ether	ug/kg	ND	922	766	83	63-130
Ethylbenzene	ug/kg	ND	922	935	102	66-130
Hexachloro-1,3-butadiene	ug/kg	ND	922	1130	123	64-150
sopropylbenzene (Cumene)	ug/kg	ND	922	1020	111	69-135
n&p-Xylene	ug/kg	ND	1850	1970	107	60-133
Methyl-tert-butyl ether	ug/kg	ND	922	760	82	65-130
Methylene Chloride	ug/kg	ND	922	855	93	61-130
n-Butylbenzene	ug/kg	ND	922	1020	111	65-140
-Propylbenzene	ug/kg	ND	922	991	108	67-140
Naphthalene	ug/kg	ND	922	946	103	15-145
o-Xylene	ug/kg	ND	922	986	100	66-133
p-Isopropyltoluene	ug/kg	ND	922	1030	111	56-147
sec-Butylbenzene	ug/kg	ND	922	1010	109	65-139
Styrene	ug/kg	ND	922	943	102	70-132
ert-Butylbenzene	ug/kg	ND	922	999	102	62-135
Tetrachloroethene	ug/kg	ND	922	1040	113	70-135
Toluene	ug/kg	ND	922	964	105	67-130
rans-1,2-Dichloroethene	ug/kg	ND	922	889	96	69-130
rans-1,3-Dichloropropene	ug/kg	ND	922	841	90	62-130
Trichloroethene	ug/kg	ND	922	1010	110	70-135
Trichlorofluoromethane	ug/kg	ND	922	82.4	9	10-130 M1
/inyl acetate	ug/kg	ND	1850	1620	88	53-130
,	ug/kg	ND	922	892	88 97	61-148
/inyl chloride		ND	922 2770	892 2950	97 107	63-132
Kylene (Total)	ug/kg %	UN	2110	2950	91	70-130
1,2-Dichloroethane-d4 (S)	%				91 99	
4-Bromofluorobenzene (S)						69-134
Toluene-d8 (S)	%				99	70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Nordt Property Pace Project No.: 92560200

SAMPLE DUPLICATE: 3390896

Parameter	Units	92559831001 Result	Dup Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg		ND		
1,1,1-Trichloroethane	ug/kg	ND	ND		
1,1,2,2-Tetrachloroethane	ug/kg	ND	ND		
1,1,2-Trichloroethane	ug/kg	ND	ND		
1,1-Dichloroethane	ug/kg	ND	ND		
1,1-Dichloroethene	ug/kg	ND	ND		
1,1-Dichloropropene	ug/kg	ND	ND		
1,2,3-Trichlorobenzene	ug/kg	ND	ND		
1,2,3-Trichloropropane	ug/kg	ND	ND		
1,2,4-Trichlorobenzene	ug/kg	ND	ND		
1,2,4-Trimethylbenzene	ug/kg	ND	ND		
1,2-Dibromo-3-chloropropane	ug/kg	ND	ND		
1,2-Dibromoethane (EDB)	ug/kg	ND	ND		
1,2-Dichlorobenzene	ug/kg	ND	ND		
1,2-Dichloroethane	ug/kg	ND	ND		
1,2-Dichloropropane	ug/kg	ND	ND		
1,3,5-Trimethylbenzene	ug/kg	ND	ND		
1,3-Dichlorobenzene	ug/kg	ND	ND		
1,3-Dichloropropane	ug/kg	ND	ND		
1,4-Dichlorobenzene	ug/kg	ND	ND		
2,2-Dichloropropane	ug/kg	ND	ND		
2-Butanone (MEK)	ug/kg	ND	ND		
2-Chlorotoluene	ug/kg	ND	ND		
2-Hexanone	ug/kg	ND	ND		
4-Chlorotoluene	ug/kg	ND	ND		
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	ND		
Acetone	ug/kg	ND	ND		
Benzene	ug/kg	ND	ND		
Bromobenzene	ug/kg	ND	ND		
Bromochloromethane	ug/kg	ND	ND		
Bromodichloromethane	ug/kg	ND	ND		
Bromoform	ug/kg	ND	ND		
Bromomethane	ug/kg	ND	ND		
Carbon tetrachloride	ug/kg	ND	ND		
Chlorobenzene	ug/kg	ND	ND		
Chloroethane	ug/kg	ND	ND		
Chloroform	ug/kg	ND	ND		
Chloromethane	ug/kg	ND	ND		
cis-1,2-Dichloroethene	ug/kg	ND	ND		
cis-1,3-Dichloropropene	ug/kg	ND	ND		
Dibromochloromethane	ug/kg	ND	ND		
Dibromomethane	ug/kg	ND	ND		
Dichlorodifluoromethane	ug/kg	ND	ND		v2
Diisopropyl ether	ug/kg	ND	ND		•_
Ethylbenzene	ug/kg	ND	ND		
Hexachloro-1,3-butadiene	ug/kg	ND	ND		
sopropylbenzene (Cumene)	ug/kg	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

_

Project:	Nordt Property
Pace Project No .:	92560200

SAMPLE DUPLICATE: 3390896

		92559831001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
m&p-Xylene	ug/kg		ND		
Methyl-tert-butyl ether	ug/kg	ND	ND		
Methylene Chloride	ug/kg	ND	ND		
n-Butylbenzene	ug/kg	ND	ND		
n-Propylbenzene	ug/kg	ND	ND		
Naphthalene	ug/kg	ND	ND		
o-Xylene	ug/kg	ND	ND		
p-Isopropyltoluene	ug/kg	ND	ND		
sec-Butylbenzene	ug/kg	ND	ND		
Styrene	ug/kg	ND	ND		
tert-Butylbenzene	ug/kg	ND	ND		
Tetrachloroethene	ug/kg	ND	ND		
Toluene	ug/kg	ND	ND		
trans-1,2-Dichloroethene	ug/kg	ND	ND		
trans-1,3-Dichloropropene	ug/kg	ND	ND		
Trichloroethene	ug/kg	ND	ND		
Trichlorofluoromethane	ug/kg	ND	ND		
Vinyl acetate	ug/kg	ND	ND		
Vinyl chloride	ug/kg	ND	ND		
Xylene (Total)	ug/kg	ND	ND		
1,2-Dichloroethane-d4 (S)	%	98	85		
4-Bromofluorobenzene (S)	%	99	94		
Toluene-d8 (S)	%	98	96		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Nordt Property Pace Project No.: 92560200							
QC Batch: 646730		Analysis Met	hod: E	PA 8015C Modi	fied		
QC Batch Method: EPA 3546		Analysis Des		015 Solid GCS	/		
		Laboratory:	P	ace Analytical S	Services - Char	lotte	
Associated Lab Samples: 9256020	0001, 92560200002						
METHOD BLANK: 3392311		Matrix:	Solid				
Associated Lab Samples: 9256020	0001, 92560200002						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifie	ers	
Diesel Range Organics(C10-C28)	mg/kg	ND	5.0				
n-Pentacosane (S)	%	61	32-130	09/13/21 17:4	49		
LABORATORY CONTROL SAMPLE:	3392312						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc. F	Result	% Rec	Limits	Qualifiers	
Diesel Range Organics(C10-C28) n-Pentacosane (S)	mg/kg %	65.6	47.7	73 72	47-130 32-130		
MATRIX SPIKE SAMPLE:	3392313						
		92558750001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Diesel Range Organics(C10-C28)	mg/kg	N	D 79.6	44.2	54	10-133	
n-Pentacosane (S)	%				54	32-130	
SAMPLE DUPLICATE: 3392314							
		92559278001	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		
Diesel Range Organics(C10-C28)	mg/kg	ND	ND				
n-Pentacosane (S)	%	44	50				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Nordt Property						
Pace Project No.:	92560200						
QC Batch:	646130		Analysis Meth	od: S	SW-846		
QC Batch Method:	SW-846		Analysis Desc	ription: D	Dry Weight/Per	cent Moisture	
			Laboratory:	F	Pace Analytical	Services - Charlotte	
Associated Lab Sar	mples: 92560200	001, 925602000	02, 92560200003, 92	560200004, 9	92560200005		
SAMPLE DUPLICA	TE: 2200006						
SAIVIPLE DUPLICA	TE: 3389086		00500404004	Dun			
Parar	neter	Units	92560181001 Result	Dup Result	RPD	Qualifiers	
Parar Percent Moisture	meter	Units %		•		0 Qualifiers	
Percent Moisture			Result	Result			
			Result 11.6	Result 11.5			
Percent Moisture	TE: 3389087		Result	Result			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Nordt Property						
Pace Project No.:	92560200						
QC Batch:	646151		Analysis Meth	iod:	SW-846		
QC Batch Method:	SW-846		Analysis Desc	cription:	Dry Weight/Per	cent Moisture	
			Laboratory:		Pace Analytical	Services - Charlotte	
Associated Lab Sa	mples: 9256020000	6					
SAMPLE DUPLICA	TE: 3389218						
			92559954001	Dup			
Para	meter	Units	Result	Result	RPD	Qualifiers	
Percent Moisture		%	19.9	20	.2	2 N2	
SAMPLE DUPLICA	ATE: 3389219						
			92560200006	Dup			
Para	meter	Units	Result	Result	RPD	Qualifiers	
Percent Moisture		%	27.5	27	-	2 N2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Nordt Property Pace Project No.: 92560200

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- C7 Analyte is a possible laboratory contaminant (not present in method blank).
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- H1 Analysis conducted outside the EPA method holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
- R1 RPD value was outside control limits.
- v2 The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Nordt Property
Pace Project No.:	92560200

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92560200001	 SB-01	EPA 3546	646730	EPA 8015C Modified	646801
92560200002	SB-02	EPA 3546	646730	EPA 8015C Modified	646801
92560200003	SB-03	EPA 3050B	646330	EPA 6010D	646511
92560200004	SB-04	EPA 3050B	646330	EPA 6010D	646511
92560200005	SB-05	EPA 3050B	646330	EPA 6010D	646511
92560200006	SB-06	EPA 3050B	646330	EPA 6010D	646511
92560200003	SB-03	EPA 7471B	648560	EPA 7471B	648843
92560200004	SB-04	EPA 7471B	648560	EPA 7471B	648843
92560200005	SB-05	EPA 7471B	649265	EPA 7471B	649402
92560200006	SB-06	EPA 7471B	649265	EPA 7471B	649402
92560200001	SB-01	EPA 5035A/5030B	646431	EPA 8260D	646447
92560200002	SB-02	EPA 5035A/5030B	646431	EPA 8260D	646447
92560200003	SB-03	EPA 5035A/5030B	646431	EPA 8260D	646447
92560200004	SB-04	EPA 5035A/5030B	646431	EPA 8260D	646447
92560200005	SB-05	EPA 5035A/5030B	646431	EPA 8260D	646447
92560200006	SB-06	EPA 5035A/5030B	646431	EPA 8260D	646447
92560200001	SB-01	SW-846	646130		
92560200002	SB-02	SW-846	646130		
92560200003	SB-03	SW-846	646130		
92560200004	SB-04	SW-846	646130		
92560200005	SB-05	SW-846	646130		
92560200006	SB-06	SW-846	646151		

Pace Analytical"	Sample Condition Docu	nent Name: n Upon Receipt ment No.: S-033-Rev.07	(SCUR	Document Revised: October 28, 2020 Page 1 of 2 Issuing Authority: Pace Carolinas Quality Office
Laboratory receiving samples: Asheville Eden Greenwood Sample Condition Upon Receipt	Huntersville	, ·	;h]] Projec	WO#:92560200
Courier: EFed Ex U	OL ATTOM PS USPS Other:			92560200
Custody Seal Present? Yes 🖾 No S	eals Intact?	es 🕅 No		Date/Initials Person Examining Contents: KS 9/9/21
Packing Material: Bubble Wrap 6 Thermometer:	Bubble Bags	None 🗌 Ol ØWet 🗆 B	ther lue	Biological Tissue Frozen?
Cooler Temp: 2.5 Correction F Cooler Temp Corrected (°C): 2.0 USDA Regulated Soil (□ N/A, water sample) Did samples originate in a quarantine zone within the	actor: ct (°C) 0	or SC (check ma	ps)?	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun Did samples originate from a foreign source (Internationally,
Yes ANO				including Hawaii and Puerto Rico)? Yes Mo Comments/Discrepancy:
Chain of Custody Present?	Yes Dr		1.	· · ·
Samples Arrived within Hold Time?	⊠yes □r		2.	
Short Hold Time Analysis (<72 hr.)?	Yes Dr	and the second se	З.	
Rush Turn Around Time Requested?	Yes D	10 🗍 N/A	4.	
Sufficient Volume?	Ves 1	lo 🖸 N/A	5.	
Correct Containers Used? -Pace Containers Used?	∑yes □/ ∑¥es □r		6.	6
Containers Intact?	Defres 🗆 r		7.	
Dissolved analysis: Samples Field Filtered? Sample Labels Match COC?			8.	
-Includes Date/Time/ID/Analysis Matrix:	SL SL	Io 🗍 N/A	9.	7
Headspace in VOA Vials (>5-6mm)?	Yes Dr		10.	e
Trip Blank Present?	Yes M		11.	8
Trip Blank Custody Seals Present?	Yes It	lo DN/A		
COMMENTS/SAMPLE DISCREPANCY				Field Data Required? Yes No
CLIENT NOTIFICATION/RESOLUTION		2	Loi	t ID of split containers:
		-		
Person-contacted:		Date/Tin	ne:	
Project Manager SCURF Review:				Date:
Project Manager SRF Review:	<u>je</u>			Date: Page 32 of 34.

			1	Pac	e Ana	alytica	al			San	ple C	ondit	ion U	lpon	Recei	pt(SC	UR)		Doc	umer	P	ised: age 2 ng Au	of 2		8, 202	!0]	
			[_					-CAR	I-CS-C)33-R	o.: e v.07					Pace	Caro				ice			
V		ed ar				f box acce										Pro	ject #	M	0	#:	9	2!			20			
						c, oil to l i						er) DC	DC, LL	Hg					: Ai Ien		92-6	EC:S	Due Roa	e Da	te:	09	/16	/21
	mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plast c ZN Acetate & NaOH (>9)	BP4C-125 mL Plast c NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	4G1U-1 liter Amber Unpreserved (N/A) (CI-)	4G1H-1 liter Amber HCl (pH < 2)	4G3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	4G3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	ials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterie Plastic (N/A – lab)	mL Sterije Plastic (N/A – lab)		3P3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	vsGU-20 mL Scintiliation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
Item#	125	8P3U-250	BP2U-500	BP1U-1 lite	BP4S-125	BP3N-250	BP42-125	BP4C-125	WGFU-Wi	AG1U-1 lit	AG1H-1 lit	AG3U-250	AG1S-1 lite	AG3S-250	AG3A(DG3	DG9H-40 r	VG9T-40 n	VG9U-40 r	DG9P-40 r	VOAK (6 vials per		SP5T-125	5P2T-250		BP3A-250	AG0U-100	VSGU-20 I	DG9U-401
1		-			\backslash	\backslash			1		\bigwedge		\backslash	\backslash	\backslash						3			\backslash	\square			
2	$\overline{\ }$				\square	\square	$\overline{\ }$	$\overline{\ }$	ĺ		\square		\setminus	$\overline{)}$	\square			-			3			\backslash	\backslash			
3	\square				\square	\backslash	\square	\square			\setminus		\backslash	\setminus	\backslash						3	-		\backslash	\backslash			
4					\square	N	\square	\square	1		\square		\square		\square									\backslash	\square			
5	$\overline{\ }$	1			\backslash	\square	$\overline{\ }$	\square			\square		\square	\square	\square						3		- 14	\backslash	\backslash			-
5						\square	\square		1				\backslash	\square	\setminus										\backslash			
7	\backslash				$\overline{\ }$	K	\square	$\overline{\ }$			\square		\setminus	\square	\square						3				\backslash			
8	\backslash				\square	\square	\square	$\overline{\ }$	١		\backslash		\backslash											\backslash	\square			
9	Ń	Ĭ			1	K	\backslash	N					\square	N	N						3				\square			
10	\backslash					K	\square	\square	1		\backslash			N							×			\backslash	\sum			2
11	$\overline{\ }$					Ń	\square				\square			N	\square										\square		2	
12	$\overline{\ }$						N	\square		1				N	\square									\backslash	\square			
		×				<u> </u>	<u> </u>	×	pł	i Ad	justi	nen	t Lo	g fo	r Pre	eser	ved	Sam	ples	5								
S	ample	e ID	Тур	be of P	reserv	vative	p	H upo	n rece	lipt	Date	pres	ervati	on adj	usted		Fime p ac	reser ljuste			Ал		of Pres	iervat	ive		Lot #	
							-									+										-		
						E							34104															
						pancy- e, out						liance	samp	les, a	еору-с	of-this-	form-v	vill-be	-sent-t	o-the-	North	Garol	ina-DE	HNR-C	Certific	ation-	Office-	(i.e

Section A	The Chain-of-Cu	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.	heted accurately.
the second s	this chain of custody constitutes acknowledgment and acceptanc Section B	e of the Frace Terms and Conditions found at https://imio.pacelaos.com/n/ Section C	
Required Client Information: Company: HCS Mid-Atlantic	Report To Steven Hav	Invoice Information: Attention:	Page: 1 Of 1
Address: 7670 Enon Dr		Company Name:	
Suite 101, Roaroke, VA 24019 Email: CUAVAncelimited com	Purchase Order #	Address: Dare Outle	Regulatory Agency
Phone: (540)627-6464 Fax	Project Name: Nordt Property, 47:12509-A	Pace Project Manager. angela baioni@pacelabs.com,	State / Location
ted Due	Project #: 12509-A	-	
		Requested Analysis Filtered (YN)	iltered (Y/N)
	M V C C C C C C C C C C C C C C C C C C	Leservatives	
SAMPLE ID One Character per box.	Waster WW Product P Product Source D C C C C C RAM OI Source D C C C C C C C C C C C C C C C C C C	b9 2005 Test 210 210 210 210 210 210 210 210 210 210	(N\Y) ənitold(
	с қ метяіх сс	OIPet Melpsuol MsS2S03 HCI HCI HX03 HS2O4 DublesetA R ot COM	Disubison ASLOLEV
1 SB-01	Pulci altier tous		001
2 SB-02			200
3 SB-03	111111200	x x	013
4 SB-03-M	1 1 200	*	7
5 SB-04	918/21 0900	× ~	000
6 SB-04- M	0000	*	>
7 SB-05		3	005
\$ SB-05-M	1000	4	<i>Y</i>
s 38-06	021	3	0,06
10 SB-06- M	1130	×	>
1.000 1.0000 1.00000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000000	*		
12 ADDITIONAL COMMENTS			
	6	ITOO KC PACE HVL 9	121 1000 2.5
	mat Press		
	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:	ARTURE ER: C4010 U/010	uo pa
	SIGNATURE of SAMPLER:	LER: STILL AND DATE Signed: AG	Cooler (YW) Sample Sample (YW) Sample (YW) Sample (YW)

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

17 August 2021

Steve Hay ECS-Roanoke 7670 Enon Dr Suite 101 Roanoke, VA 24019 RE: NORDT PROPERTY

Enclosed are the results of analyses for samples received by the laboratory on 08/12/21 15:10.

Maryland Spectral Services, Inc. is a TNI 2009 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2009 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2009 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ratacka Koms

Rabecka Koons Quality Assurance Officer

Maryland Ser es

Analytical Chemistry Services

Analytical Results

Project: NORDT PROPERTY

Project Number: 47:12509-A Project Manager: Steve Hay 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

08/17/21 12:06

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SVP-1		1081221-01	Vapor	08/10/21 19:10	08/12/21 15:10
SVP-2		1081221-02	Vapor	08/10/21 19:17	08/12/21 15:10
SVP-3		1081221-03	Vapor	08/10/21 19:30	08/12/21 15:10
SVP-4		1081221-04	Vapor	08/10/21 19:33	08/12/21 15:10

aker

Rabecka Koons, Quality Assurance Officer

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Maryland spectral Ser es

Project: NORDT PROPERTY

Project Number: 47:12509-A Project Manager: Steve Hay 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

08/17/21 12:06

SVP-1

1081221-01 (Vapor) Sample Date: 08/10/21

Benzene ND upm' 2.56 0.64 4 08/1221 08/1221 21:00 WB Benzyl chloride ND upm' 4.00 1.00 4 08/1221 08/1221 21:00 WB Bromoform ND upm' 5.20 1.30 4 08/1221 08/1221 21:00 WB Bromoform ND upm' 5.20 1.76 4 08/1221 08/1221 21:00 WB Bromoform ND upm' 1.76 1.76 4 08/1221 08/1221 21:00 WB Carbon disulfide ND upm' 5.20 1.30 4 08/1221 08/1221 21:00 WB Chlorobenzene ND upm' 3.68 0.92 4 08/1221 08/1221 21:00 WB Chlorobenzene ND upm' 3.68 0.92 4 08/1221 08/1221 21:00 WB Chlorobenzene ND upm' 2.52 0.63 4 08/1221 08/1221 00 <td< th=""><th></th><th></th><th></th><th>Reporting</th><th>Detection</th><th></th><th></th><th></th><th></th></td<>				Reporting	Detection				
AcetoneNDug/m²9,609,60408/12101/121 21.00WBBenzenNDug/m²2,560,64408/122108/1221 21.00WBBenzolchlorideNDug/m²4,001,00408/122108/1221 21.00WBBromodichloromethaneNDug/m²5,201,010408/122108/1221 21.00WBBromodichloromethaneNDug/m²1,210,78408/122108/1221 21.00WBBromodichloromethaneNDug/m²6,246,24408/122108/1221 21.00WBLabtationeNDug/m²6,246,24408/122108/1221 21.00WBCarbon disulfideNDug/m²3,880,97408/122108/1221 21.00WBChloroethaneNDug/m²2,820,63408/122108/1221 21.00WBChloroethaneNDug/m²2,760,63408/122108/1221 21.00WBChloroethaneNDug/m²5,201,30408/122108/1221 21.00WBLabtationethaneNDug/m²5,201,30408/122108/1221 21.00WBChloroethaneNDug/m²5,201,30408/122108/1221 21.00WBLabtationethaneNDug/m²5,201,30408/122108/1221 21.00WBLabtationethaneNDug/m² <t< td=""><td>Analyte</td><td>Result Not</td><td>tes Units</td><td>Limit (MRL)</td><td>Limit (LOD)</td><td>Dilution</td><td>Prepared</td><td>Analyzed</td><td>Analyst</td></t<>	Analyte	Result Not	tes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
BanzaneNDug/m²2.560.64408/122108/1221 21:00WBBanzyl chlorideNDug/m²4.001.00408/122108/1221 21:00WBBromoforchaneNDug/m²5.201.30408/122108/1221 21:00WBBromoforchaneNDug/m²8.402.10408/122108/1221 21:00WBBromoforchaneNDug/m²3.120.78408/122108/1221 21:00WBBromoforchaneNDug/m²6.246.24408/122108/1221 21:00WBCarbon disulfulc 859 ug/m²5.201.30408/122108/1221 21:00WBChlorochaneNDug/m²3.680.92408/122108/1221 21:00WBChlorochaneNDug/m²3.680.97408/122108/1221 21:00WBChlorochaneNDug/m²1.640.41408/122108/1221 21:00WBChlorochaneNDug/m²5.201.30408/122108/1221 100WBChlorochaneNDug/m²5.201.30408/122108/1221 100WBL'DiblorochaneNDug/m²5.201.30408/122108/1221 100WBL'DiblorochaneNDug/m²5.201.30408/122108/1221 100WBL'DiblorochaneNDug/m²5.201.30	Volatile Organics by EPA TO-	15 (GC/MS) Prepa	red by TO-15 F	rep					
Ranzyl chlorideND $ug'm^1$ 4.00 1.00 4 081221 081221 1.00 WBBromodichloromethaneND $ug'm^1$ 5.20 1.30 4 081221 081221 1.00 WBBromoformND $ug'm^1$ 5.20 1.30 4 081221 081221 1.00 WBBromonethaneND $ug'm^1$ 1.76 1.76 4 081221 081221 1.00 WB1,3-ButadieneND $ug'm^1$ 6.24 6.24 4 081221 081221 1.00 WBCarbon disulfide 8.59 $ug'm^1$ 5.20 1.30 4 081221 081221 1.00 WBCarbon terachlorideND $ug'm^1$ 5.60 1.30 4 081221 081221 1.00 WBChloroschaneND $ug'm^2$ 3.88 0.97 4 081221 081221 1.00 WBChloroschaneND $ug'm^2$ 1.64 0.41 4 081221 081221 1.00 WBCyclockaneND $ug'm^2$ 2.76 0.69 4 081221 081221 1.00 WBLyboroschane (EDB)ND $ug'm^2$ 5.60 1.40 4 081221 081221 1.00 WBLyboroschane (EDB)ND $ug'm^2$ 3.66 1.40 4 081221 081221 1.00 WBLyboroschane (EDB)ND $ug'm^2$ 3.66 1.40	Acetone	ND	ug/m³	9.60	9.60	4	08/12/21	08/12/21 21:00	WB
Bromodichloromethane ND ug/m ¹ 5.20 1.30 4 08/1221 08/1221 1.00 WB Bromonform ND ug/m ¹ 8.40 2.10 4 08/1221 08/1221 0.00 WB Bromonform ND ug/m ¹ 3.12 0.78 4 08/1221 08/1221 0.00 WB J.3-Buddiene ND ug/m ¹ 6.24 6.24 0.81/221 0.81/221 0.81/221 0.81/221 0.81/221 0.00 WB Carbon disulfide S.59 ug/m ¹ 5.20 1.30 4 0.81/221 <td>Benzene</td> <td>ND</td> <td>ug/m³</td> <td>2.56</td> <td>0.64</td> <td>4</td> <td>08/12/21</td> <td>08/12/21 21:00</td> <td>WB</td>	Benzene	ND	ug/m ³	2.56	0.64	4	08/12/21	08/12/21 21:00	WB
BromoformNDug/m³8.402.10408/122108/1221 21.00WBBromomethaneNDug/m³3.120.78408/122108/1221 21.00WBJ.3-ButdefneNDug/m³1.761.76408/122108/1221 21.00WBCarbon disulfuleNDug/m³6.246.2408/122108/1221 21.00WBCarbon disulfuleNDug/m³6.246.2408/122108/1221 08WBChlorobenzeneNDug/m³3.680.92408/122108/1221 1.00WBChlorobenzeneNDug/m³3.680.92408/122108/1221 1.00WBChlorobenzeneNDug/m³3.680.92408/122108/1221 1.00WBChlorobenzeneNDug/m³3.680.92408/122108/1221 08WBChlorobenzeneNDug/m³3.680.92408/122108/1221 08WBChlorobenzeneNDug/m³2.520.63408/122108/1221 08WBCyclohexaneNDug/m³2.561.30408/122108/1221 08WB1,2-DichlorobenzeneNDug/m³5.601.40408/122108/1221 08WB1,4-DichlorobenzeneNDug/m³3.963.96408/122108/1221 08WB1,4-DichlorobenzeneNDug/m³3.240.814	Benzyl chloride	ND	ug/m ³	4.00	1.00	4	08/12/21	08/12/21 21:00	WB
BromomethaneNDug/m²3.120.78408/122108/1221 21:00WB1,3-ButadieneNDug/m²1.761.76408/122108/1221 21:00WBCarbon disulfide8.59ug/m²6.246.24408/122108/1221 21:00WBCarbon terachlorideNDug/m²5.201.30408/122108/1221 21:00WBChlorobenzeneNDug/m²3.680.92408/122108/1221 21:00WBChlorobenzeneNDug/m²3.680.97408/122108/1221 21:00WBChlorobenzeneNDug/m²3.880.97408/122108/1221 21:00WBChlorobenzeneNDug/m²3.880.97408/122108/1221 21:00WBChlorobenzeneNDug/m²5.201.30408/122108/1221 21:00WBCyclohexaneNDug/m²5.201.30408/122108/1221 21:00WB1,2-DichlorobenzeneNDug/m²4.801.20408/122108/1221 21:00WB1,2-DichlorobenzeneNDug/m²3.640.81408/122108/1221 21:00WB1,1-DichlorobenzeneNDug/m²3.640.81408/122108/1221 21:00WB1,1-DichlorobenzeneNDug/m²3.640.81408/122108/1221 21:00WB1,1-Dichlorobenzene	Bromodichloromethane	ND	ug/m ³	5.20	1.30	4	08/12/21	08/12/21 21:00	WB
And Bug Bug <td>Bromoform</td> <td>ND</td> <td>ug/m³</td> <td>8.40</td> <td>2.10</td> <td>4</td> <td>08/12/21</td> <td>08/12/21 21:00</td> <td>WB</td>	Bromoform	ND	ug/m ³	8.40	2.10	4	08/12/21	08/12/21 21:00	WB
Arrow Barlandia No. Barlandia Barlandia <t< td=""><td>Bromomethane</td><td>ND</td><td>ug/m³</td><td>3.12</td><td>0.78</td><td>4</td><td>08/12/21</td><td>08/12/21 21:00</td><td>WB</td></t<>	Bromomethane	ND	ug/m ³	3.12	0.78	4	08/12/21	08/12/21 21:00	WB
Carbon tetrachloride ND ug/m² 5.20 1.30 4 08/1221 08/1221 1.00 WB Chlorobenzene ND ug/m² 3.68 0.92 4 08/1221 08/1221 21:00 WB Chlorobenzene ND ug/m² 2.12 1.06 4 08/1221 08/1221 21:00 WB Chlorobfame ND ug/m² 3.88 0.97 4 08/1221 08/1221 21:00 WB Chlorobform ND ug/m² 2.52 0.63 4 08/1221 08/1221 21:00 WB 3.Chloropopre ND ug/m² 5.20 1.30 4 08/1221 08/1221 21:00 WB Cyclohxane ND ug/m² 5.20 1.30 4 08/1221 08/1221 21:00 WB 1,2-Dichlorobenzene ND ug/m² 5.60 1.40 4 08/1221 08/1221 1:00 WB 1,4-Dichlorobenzene ND ug/m² 3.60 1.20 4 08/1221	1,3-Butadiene	ND	ug/m ³	1.76	1.76	4	08/12/21	08/12/21 21:00	WB
ND ug/m³ 3.68 0.92 4 08/12/21	Carbon disulfide	8.59	ug/m³	6.24	6.24	4	08/12/21	08/12/21 21:00	WB
ND ug/m³ 2.12 1.16 4 08/12/21 08/12/21 08/12/21 08/12/21 1.01 WB Chlorothane ND ug/m³ 3.88 0.97 4 08/12/21 08/12	Carbon tetrachloride	ND	ug/m ³	5.20	1.30	4	08/12/21	08/12/21 21:00	WB
ND Ug/m³ 3.88 0.97 4 08/12/1 08/12/21 21/2 0.97 Chloroform ND Ug/m³ 3.88 0.97 4 08/12/21 108/12/21 08/12/21 108/12/21 08/12/21 108/12/21 08/12/21 108/12/21 08/12/21 108/12/21 08/12/21 108/12/21 08/12/21 108/12/21 08/12/21 108/12/21 <	Chlorobenzene	ND	ug/m ³	3.68	0.92	4	08/12/21	08/12/21 21:00	WB
NumberNDug/m³1.640.41408/122108/1221 21:00WB3-ChloropropeneNDug/m³2.520.63408/122108/1221 21:00WBCyclohexaneNDug/m³2.760.69408/122108/1221 21:00WBDibromochloromethaneNDug/m³5.201.30408/122108/1221 21:00WB1,2-Dibromochane (EDB)NDug/m³5.601.40408/122108/1221 21:00WB1,2-DichlorobenzeneNDug/m³4.801.20408/122108/1221 21:00WB1,3-DichlorobenzeneNDug/m³4.801.20408/122108/1221 21:00WB1,4-DichlorobenzeneNDug/m³3.963.96408/122108/1221 21:00WB1,1-DichlorothaneNDug/m³3.240.81408/122108/1221 21:00WB1,1-DichlorothaneNDug/m³3.160.79408/122108/1221 21:00WB1,1-DichlorothaneNDug/m³3.160.79408/122108/1221 21:00WB1,2-DichlorotheneNDug/m³3.660.91408/122108/1221 21:00WB1,2-DichlorotheneNDug/m³3.660.91408/122108/1221 21:00WB1,2-DichloroptopeneNDug/m³3.640.91408/122108/1221 21:00WB1,2	Chloroethane	ND	ug/m ³	2.12	1.06	4	08/12/21	08/12/21 21:00	WB
No.up/m³2.520.63408/12/108/12/108/12/1100CyclohexaneNDup/m³2.760.669408/12/1 </td <td>Chloroform</td> <td>ND</td> <td>ug/m³</td> <td>3.88</td> <td>0.97</td> <td>4</td> <td>08/12/21</td> <td>08/12/21 21:00</td> <td>WB</td>	Chloroform	ND	ug/m ³	3.88	0.97	4	08/12/21	08/12/21 21:00	WB
Cyclohexane ND ug/m³ 2.76 0.69 4 08/12/21	Chloromethane	ND	ug/m ³	1.64	0.41	4	08/12/21	08/12/21 21:00	WB
Dibromochloromethane ND ug/m³ 5.20 1.30 4 08/12/21 08/12/2	3-Chloropropene	ND	ug/m ³	2.52	0.63	4	08/12/21	08/12/21 21:00	WB
1,2-Dibromothane (EDB)NDug/m³5.601.40408/12/2108/12/21 21:00WB1,2-Dibromothane (EDB)NDug/m³4.801.20408/12/2108/12/21 21:00WB1,3-DichlorobenzeneNDug/m³4.801.20408/12/2108/12/21 21:00WB1,4-DichlorobenzeneNDug/m³4.801.20408/12/2108/12/21 21:00WBDichlorodifluoromethane19.6ug/m³3.963.96408/12/2108/12/21 21:00WB1,1-DichloroethaneNDug/m³3.240.81408/12/2108/12/21 21:00WB1,2-DichloroetheneNDug/m³3.160.79408/12/2108/12/21 21:00WB1,1-DichloroetheneNDug/m³3.160.79408/12/2108/12/21 21:00WB1,2-DichloroetheneNDug/m³3.660.92408/12/2108/12/21 21:00WB1,2-DichloroetheneNDug/m³3.640.91408/12/2108/12/21 21:00WB1,2-DichloropropeneNDug/m³3.640.91408/12/2108/12/21 21:00WB1,4-DioxaneNDug/m³3.640.91408/12/2108/12/21 21:00WB1,4-DioxaneNDug/m³3.640.91408/12/2108/12/21 21:00WBEthylbenzene2.26Jug/m³3.480.87408/12/21	Cyclohexane	ND	ug/m ³	2.76	0.69	4	08/12/21	08/12/21 21:00	WB
1,2-DichlorobenzeneNDug/m³4.801.20408/12/2108/12/21 21:00WB1,3-DichlorobenzeneNDug/m³4.801.20408/12/2108/12/21 21:00WB1,4-DichlorobenzeneNDug/m³4.801.20408/12/2108/12/21 21:00WBDichlorodifluoromethane19.6ug/m³3.963.96408/12/2108/12/21 21:00WB1,1-DichloroethaneNDug/m³3.240.81408/12/2108/12/21 21:00WB1,2-DichloroethaneNDug/m³3.240.81408/12/2108/12/21 21:00WB1,1-DichloroetheneNDug/m³3.160.79408/12/2108/12/21 21:00WB1,2-DichloroetheneNDug/m³3.160.79408/12/2108/12/21 21:00WBtrans-1,2-DichloroetheneNDug/m³3.160.79408/12/2108/12/21 21:00WB1,2-DichloropropaneNDug/m³3.640.91408/12/2108/12/21 21:00WBtrans-1,3-DichloropropeneNDug/m³3.640.91408/12/2108/12/21 21:00WB1,4-DioxaneNDug/m³3.640.91408/12/2108/12/21 21:00WB1,4-DioxaneNDug/m³3.640.91408/12/2108/12/21 21:00WBEthyla cetateNDug/m³3.640.91408/12/21	Dibromochloromethane	ND	ug/m ³	5.20	1.30	4	08/12/21	08/12/21 21:00	WB
1,3-DichlorobenzeneNDug/m³4.801.20408/12/2108/12/2121:00WB1,4-DichlorobenzeneNDug/m³4.801.20408/12/2108/12/2121:00WBDichlorodifluoromethane19.6ug/m³3.963.96408/12/2108/12/2121:00WB1,1-DichloroethaneNDug/m³3.240.81408/12/2108/12/2121:00WB1,2-DichloroethaneNDug/m³3.240.81408/12/2108/12/2121:00WB1,2-DichloroetheneNDug/m³3.160.79408/12/2108/12/2121:00WB1,2-DichloroetheneNDug/m³3.160.79408/12/2108/12/2121:00WBtrans-1,2-DichloroetheneNDug/m³3.160.79408/12/2108/12/2121:00WB1,2-DichloropropaneNDug/m³3.680.92408/12/2108/12/2121:00WBtrans-1,3-DichloropropeneNDug/m³3.640.91408/12/2108/12/210WB1,4-DioxaneNDug/m³3.640.91408/12/2108/12/210WBEthyla cetateNDug/m³3.680.72408/12/2108/12/210WB1,4-DioxaneNDug/m³3.480.87408/12/2108/12/2108/12/210WBEthylbenzene2.26 <td< td=""><td>1,2-Dibromoethane (EDB)</td><td>ND</td><td>ug/m³</td><td>5.60</td><td>1.40</td><td>4</td><td>08/12/21</td><td>08/12/21 21:00</td><td>WB</td></td<>	1,2-Dibromoethane (EDB)	ND	ug/m ³	5.60	1.40	4	08/12/21	08/12/21 21:00	WB
NDug/m³4.801.20408/12/2108/12/21 21:00WBDichlorodifluoromethane19.6ug/m³3.963.96408/12/2108/12/21 21:00WB1,1-DichloroethaneNDug/m³3.240.81408/12/2108/12/21 21:00WB1,2-DichloroethaneNDug/m³3.240.81408/12/2108/12/21 21:00WB1,2-DichloroethaneNDug/m³3.160.79408/12/2108/12/21 21:00WB1,1-DichloroetheneNDug/m³3.160.79408/12/2108/12/21 21:00WBtrans-1,2-DichloroetheneNDug/m³3.160.79408/12/2108/12/21 21:00WBtrans-1,2-DichloroetheneNDug/m³3.160.79408/12/2108/12/21 21:00WBtrans-1,2-DichloroetheneNDug/m³3.640.91408/12/2108/12/21 21:00WBtrans-1,3-DichloropropaneNDug/m³3.640.91408/12/2108/12/21 21:00WBtrans-1,3-DichloropropeneNDug/m³3.640.91408/12/2108/12/21 21:00WBtrans-1,3-DichloropropeneNDug/m³3.640.91408/12/2108/12/21 21:00WBtrans-1,3-DichloropropeneNDug/m³3.640.91408/12/2108/12/21 21:00WBEthyl acetateNDug/m³3.480.724<	1,2-Dichlorobenzene	ND	ug/m ³	4.80	1.20	4	08/12/21	08/12/21 21:00	WB
Dicklorodifluoromethane 19.6 ug/m³ 3.96 3.96 4 08/12/21 08/12/21 21:00 WB 1,1-Dichloroethane ND ug/m³ 3.24 0.81 4 08/12/21 08/12/21 21:00 WB 1,2-Dichloroethane ND ug/m³ 3.24 0.81 4 08/12/21 08/12/21 21:00 WB 1,2-Dichloroethane ND ug/m³ 3.24 0.81 4 08/12/21 08/12/21 08/12/21 21:00 WB 1,1-Dichloroethane ND ug/m³ 3.16 0.79 4 08/12/21 08/12/21 08/12/21 21:00 WB 1,1-Dichloroethene ND ug/m³ 3.16 0.79 4 08/12/21 08/12/21 08/12/21 21:00 WB trans-1,2-Dichloroethene 11.3 ug/m³ 3.16 0.79 4 08/12/21 08/12/21 08/12/21 21:00 WB 1,2-Dichloropropane ND ug/m³ 3.64 0.91 4 08/12/21 08/12/21 08/12/21 21:00 WB trans-1,3-Dichloropropene ND ug/m³ 3.64 0.91 4 08/12/21 08/12/21 21:00	1,3-Dichlorobenzene	ND	ug/m³	4.80	1.20	4	08/12/21	08/12/21 21:00	WB
InterviewerNoug/m³3.240.81408/12/2108/12/2121.00WB1,1-DichloroethaneNDug/m³3.240.81408/12/2108/12/2121.00WB1,1-DichloroethaneNDug/m³3.160.79408/12/2108/12/2108/12/2121.00WB1,1-DichloroetheneNDug/m³3.160.79408/12/2108/12/2108/12/2121.00WBcis-1,2-DichloroetheneNDug/m³3.160.79408/12/2108/12/2108/12/2121.00WBtrans-1,2-Dichloroethene11.3ug/m³3.160.79408/12/2108/12/2108/12/2121.00WB1,2-DichloropropaneNDug/m³3.680.92408/12/2108/12/2121.00WBcis-1,3-DichloropropeneNDug/m³3.640.91408/12/2108/12/2121.00WBtrans-1,3-DichloropropeneNDug/m³3.640.91408/12/2108/12/2121.00WB1,4-DioxaneNDug/m³2.880.72408/12/2108/12/2121.00WBEthyl acetateNDug/m³14.414.4408/12/2108/12/2121.00WBEthylbenzene2.26Jug/m³3.480.87408/12/2108/12/2121.00WB	1,4-Dichlorobenzene	ND	ug/m³	4.80	1.20	4	08/12/21	08/12/21 21:00	WB
1,2-Dichloroethane ND ug/m³ 3,24 0,81 4 08/12/21 08/12/21 21:00 WB 1,1-Dichloroethene ND ug/m³ 3,16 0,79 4 08/12/21 08/12/21 21:00 WB cis-1,2-Dichloroethene ND ug/m³ 3,16 0,79 4 08/12/21 08/12/21 21:00 WB trans-1,2-Dichloroethene ND ug/m³ 3,16 0,79 4 08/12/21 08/12/21 21:00 WB trans-1,2-Dichloroethene ND ug/m³ 3,16 0,79 4 08/12/21 08/12/21 21:00 WB trans-1,2-Dichloroptopane ND ug/m³ 3,68 0,92 4 08/12/21 08/12/21 21:00 WB cis-1,3-Dichloropropane ND ug/m³ 3,64 0,91 4 08/12/21 08/12/21 21:00 WB trans-1,3-Dichloropropene ND ug/m³ 3,64 0,91 4 08/12/21 08/12/21 21:00 WB 1,4-Dioxane ND ug/m³ 2,88 0,72 4 08/12/21 08/12/21 21:00 WB <t< td=""><td>Dichlorodifluoromethane</td><td>19.6</td><td>ug/m³</td><td>3.96</td><td>3.96</td><td>4</td><td>08/12/21</td><td>08/12/21 21:00</td><td>WB</td></t<>	Dichlorodifluoromethane	19.6	ug/m³	3.96	3.96	4	08/12/21	08/12/21 21:00	WB
1,1-DichloroetheneNDug/m³3.160.79408/12/2108/12/21 21:00WBcis-1,2-DichloroetheneNDug/m³3.160.79408/12/2108/12/21 21:00WBtrans-1,2-Dichloroethene11.3ug/m³3.160.79408/12/2108/12/21 21:00WB1,2-DichloroptopaneNDug/m³3.680.92408/12/2108/12/21 21:00WBi,2-DichloropropaneNDug/m³3.640.91408/12/2108/12/21 21:00WBtrans-1,3-DichloropropeneNDug/m³3.640.91408/12/2108/12/21 21:00WBtrans-1,3-DichloropropeneNDug/m³3.640.91408/12/2108/12/21 21:00WBtrans-1,4-DioxaneNDug/m³2.880.72408/12/2108/12/21 21:00WBEthyl acetateNDug/m³14.414.4408/12/2108/12/21 21:00WBEthylbenzene2.26Jug/m³3.480.87408/12/2108/12/21 21:00WB	1,1-Dichloroethane	ND	ug/m ³	3.24	0.81	4	08/12/21	08/12/21 21:00	WB
ND ug/m³ 3.16 0.79 4 08/12/21 08/12/21 21:00 WB trans-1,2-Dichloroethene 11.3 ug/m³ 3.16 0.79 4 08/12/21 08/12/21 21:00 WB 1,2-Dichloropropane ND ug/m³ 3.68 0.92 4 08/12/21 08/12/21 21:00 WB cis-1,3-Dichloropropane ND ug/m³ 3.64 0.91 4 08/12/21 08/12/21 21:00 WB trans-1,3-Dichloropropene ND ug/m³ 3.64 0.91 4 08/12/21 08/12/21 21:00 WB 1,4-Dioxane ND ug/m³ 3.64 0.91 4 08/12/21 08/12/21 21:00 WB Ethyl acetate ND ug/m³ 3.64 0.91 4 08/12/21 08/12/21 21:00 WB Ethyl acetate ND ug/m³ 3.48 0.87 4 08/12/21 08/12/21 21:00 WB Ethylbenzene 2.26 J ug/m³ 3.48 0.87 4 08/12/21 08/12/21 21:00 WB	1,2-Dichloroethane	ND	ug/m ³	3.24	0.81	4	08/12/21	08/12/21 21:00	WB
trans-1,2-Dichloroethene 11.3 ug/m³ 3.16 0.79 4 08/12/21 08/12/21 21:00 WB 1,2-Dichloropropane ND ug/m³ 3.68 0.92 4 08/12/21 08/12/21 21:00 WB cis-1,3-Dichloropropene ND ug/m³ 3.64 0.91 4 08/12/21 08/12/21 21:00 WB trans-1,3-Dichloropropene ND ug/m³ 3.64 0.91 4 08/12/21 08/12/21 21:00 WB 1,4-Dioxane ND ug/m³ 2.88 0.72 4 08/12/21 08/12/21 21:00 WB Ethyl acetate ND ug/m³ 14.4 14.4 4 08/12/21 08/12/21 21:00 WB Ethyl acetate ND ug/m³ 3.48 0.87 4 08/12/21 08/12/21 21:00 WB	1,1-Dichloroethene	ND	ug/m ³	3.16	0.79	4	08/12/21	08/12/21 21:00	WB
International of the state International of the state <thinternational of="" state<="" th="" the=""> <thi< td=""><td>cis-1,2-Dichloroethene</td><td>ND</td><td>ug/m³</td><td>3.16</td><td>0.79</td><td>4</td><td>08/12/21</td><td>08/12/21 21:00</td><td>WB</td></thi<></thinternational>	cis-1,2-Dichloroethene	ND	ug/m ³	3.16	0.79	4	08/12/21	08/12/21 21:00	WB
NDug/m³3.640.91408/12/2108/12/21 21:00WBtrans-1,3-DichloropropeneNDug/m³3.640.91408/12/2108/12/21 21:00WB1,4-DioxaneNDug/m³2.880.72408/12/2108/12/21 21:00WBEthyl acetateNDug/m³14.414.4408/12/2108/12/21 21:00WBEthylbenzene2.26Jug/m³3.480.87408/12/2108/12/21 21:00WB	trans-1,2-Dichloroethene	11.3	ug/m ³	3.16	0.79	4	08/12/21	08/12/21 21:00	WB
Interspective ND ug/m³ 3.64 0.91 4 08/12/21 08/12/21 21:00 WB 1,4-Dioxane ND ug/m³ 2.88 0.72 4 08/12/21 08/12/21 21:00 WB Ethyl acetate ND ug/m³ 14.4 14.4 4 08/12/21 08/12/21 21:00 WB Ethyl acetate ND ug/m³ 3.48 0.87 4 08/12/21 08/12/21 21:00 WB	1,2-Dichloropropane	ND	ug/m³	3.68	0.92	4	08/12/21	08/12/21 21:00	WB
Instruction ND ug/m³ 2.88 0.72 4 08/12/21 08/12/21 21:00 WB Ethyl acetate ND ug/m³ 14.4 14.4 4 08/12/21 08/12/21 21:00 WB Ethyl acetate D ug/m³ 14.4 14.4 4 08/12/21 08/12/21 21:00 WB Ethylbenzene 2.26 J ug/m³ 3.48 0.87 4 08/12/21 08/12/21 21:00 WB	cis-1,3-Dichloropropene	ND	ug/m ³	3.64	0.91	4	08/12/21	08/12/21 21:00	WB
Ethyl acetate ND ug/m ³ 14.4 14.4 4 08/12/21 08/12/21 21:00 WB Ethylbenzene 2.26 J ug/m ³ 3.48 0.87 4 08/12/21 08/12/21 21:00 WB	trans-1,3-Dichloropropene	ND	ug/m ³	3.64	0.91	4	08/12/21	08/12/21 21:00	WB
Ethylbenzene 2.26 J ug/m ³ 3.48 0.87 4 08/12/21 08/12/21 21:00 WB	1,4-Dioxane	ND	ug/m³	2.88	0.72	4	08/12/21	08/12/21 21:00	WB
	Ethyl acetate	ND	ug/m³	14.4	14.4	4	08/12/21	08/12/21 21:00	WB
4-Ethyltoluene ND ug/m ³ 3.92 0.98 4 08/12/21 08/12/21 21:00 WB	Ethylbenzene	2.26	J ug/m ³	3.48	0.87	4	08/12/21	08/12/21 21:00	WB
	4-Ethyltoluene	ND	ug/m³	3.92	0.98	4	08/12/21	08/12/21 21:00	WB

alace

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

Maryland Ser es

Project: NORDT PROPERTY

Project Number: 47:12509-A Project Manager: Steve Hay

1500 Caton Center Dr Suite Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

08/17/21 12:06

SVP-1

1081221-01 (Vapor) Sample Date: 08/10/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	y TO-15 P	rep (continued)					
Freon 113	ND		ug/m³	6.00	1.50	4	08/12/21	08/12/21 21:00	WB
Freon 114	ND		ug/m³	5.60	5.60	4	08/12/21	08/12/21 21:00	WB
n-Heptane	3.11	J	ug/m³	3.28	0.82	4	08/12/21	08/12/21 21:00	WB
Hexachlorobutadiene	ND		ug/m³	8.40	8.40	4	08/12/21	08/12/21 21:00	WB
Hexane	ND		ug/m³	56.0	56.0	4	08/12/21	08/12/21 21:00	WB
2-Hexanone	ND		ug/m³	3.28	0.59	4	08/12/21	08/12/21 21:00	WB
Isopropylbenzene (Cumene)	ND		ug/m³	4.40	1.60	4	08/12/21	08/12/21 21:00	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m³	2.88	0.82	4	08/12/21	08/12/21 21:00	WB
Methylene chloride	ND		ug/m³	72.0	72.0	4	08/12/21	08/12/21 21:00	WB
Methyl ethyl ketone (2-Butanone)	ND		ug/m³	2.36	1.36	4	08/12/21	08/12/21 21:00	WB
Methyl isobutyl ketone	ND		ug/m³	3.28	3.28	4	08/12/21	08/12/21 21:00	WB
Naphthalene	ND		ug/m³	4.40	2.80	4	08/12/21	08/12/21 21:00	WB
Propene	ND		ug/m³	1.36	1.36	4	08/12/21	08/12/21 21:00	WB
n-Propylbenzene	ND		ug/m³	3.92	1.60	4	08/12/21	08/12/21 21:00	WB
Styrene	0.85	J	ug/m³	3.40	0.59	4	08/12/21	08/12/21 21:00	WB
1,1,2,2-Tetrachloroethane	ND		ug/m³	5.60	1.40	4	08/12/21	08/12/21 21:00	WB
Tetrachloroethene	ND		ug/m³	5.60	2.80	4	08/12/21	08/12/21 21:00	WB
Tetrahydrofuran	ND		ug/m³	2.36	0.59	4	08/12/21	08/12/21 21:00	WB
Toluene	34.4		ug/m³	3.00	1.40	4	08/12/21	08/12/21 21:00	WB
1,2,4-Trichlorobenzene	ND		ug/m³	6.00	1.50	4	08/12/21	08/12/21 21:00	WB
1,1,1-Trichloroethane	ND		ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:00	WB
1,1,2-Trichloroethane	ND		ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:00	WB
Trichloroethene	ND		ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:00	WB
Trichlorofluoromethane (Freon 11)	4.49		ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:00	WB
1,2,4-Trimethylbenzene	ND		ug/m³	3.92	0.98	4	08/12/21	08/12/21 21:00	WB
1,3,5-Trimethylbenzene	ND		ug/m³	3.92	0.98	4	08/12/21	08/12/21 21:00	WB
2,2,4-Trimethylpentane	ND		ug/m³	3.72	0.93	4	08/12/21	08/12/21 21:00	WB
Vinyl acetate	ND		ug/m³	2.80	2.80	4	08/12/21	08/12/21 21:00	WB
Vinyl bromide	ND		ug/m³	3.48	0.87	4	08/12/21	08/12/21 21:00	WB
Vinyl chloride	ND		ug/m³	2.04	0.51	4	08/12/21	08/12/21 21:00	WB
o-Xylene	1.91	J	ug/m³	3.48	0.87	4	08/12/21	08/12/21 21:00	WB
m- & p-Xylenes	8.51		ug/m³	6.80	1.70	4	08/12/21	08/12/21 21:00	WB
Surrogate: 4-Bromofluorobenzene		7	3-115	98 %	08/12/2	l	08/12/21 21:00		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

Maryland spectral Ser es

Project: NORDT PROPERTY

Project Number: 47:12509-A Project Manager: Steve Hay 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

08/17/21 12:06

SVP-2

1081221-02 (Vapor) Sample Date: 08/10/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	GC/MS) Pi	repared b	y TO-15 l	Prep					
Acetone	77.4		ug/m³	9.60	9.60	4	08/12/21	08/12/21 21:29	WB
Benzene	0.89	J	ug/m³	2.56	0.64	4	08/12/21	08/12/21 21:29	WB
Benzyl chloride	ND		ug/m³	4.00	1.00	4	08/12/21	08/12/21 21:29	WB
Bromodichloromethane	ND		ug/m³	5.20	1.30	4	08/12/21	08/12/21 21:29	WB
Bromoform	ND		ug/m³	8.40	2.10	4	08/12/21	08/12/21 21:29	WB
Bromomethane	ND		ug/m³	3.12	0.78	4	08/12/21	08/12/21 21:29	WB
1,3-Butadiene	ND		ug/m³	1.76	1.76	4	08/12/21	08/12/21 21:29	WB
Carbon disulfide	9.84		ug/m³	6.24	6.24	4	08/12/21	08/12/21 21:29	WB
Carbon tetrachloride	ND		ug/m³	5.20	1.30	4	08/12/21	08/12/21 21:29	WB
Chlorobenzene	ND		ug/m³	3.68	0.92	4	08/12/21	08/12/21 21:29	WB
Chloroethane	ND		ug/m³	2.12	1.06	4	08/12/21	08/12/21 21:29	WB
Chloroform	ND		ug/m³	3.88	0.97	4	08/12/21	08/12/21 21:29	WB
Chloromethane	1.24	J	ug/m³	1.64	0.41	4	08/12/21	08/12/21 21:29	WB
3-Chloropropene	ND		ug/m³	2.52	0.63	4	08/12/21	08/12/21 21:29	WB
Cyclohexane	0.83	J	ug/m³	2.76	0.69	4	08/12/21	08/12/21 21:29	WB
Dibromochloromethane	ND		ug/m³	5.20	1.30	4	08/12/21	08/12/21 21:29	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	5.60	1.40	4	08/12/21	08/12/21 21:29	WB
1,2-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	08/12/21	08/12/21 21:29	WB
1,3-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	08/12/21	08/12/21 21:29	WB
1,4-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	08/12/21	08/12/21 21:29	WB
Dichlorodifluoromethane	ND		ug/m³	3.96	3.96	4	08/12/21	08/12/21 21:29	WB
1,1-Dichloroethane	ND		ug/m³	3.24	0.81	4	08/12/21	08/12/21 21:29	WB
1,2-Dichloroethane	ND		ug/m³	3.24	0.81	4	08/12/21	08/12/21 21:29	WB
1,1-Dichloroethene	ND		ug/m³	3.16	0.79	4	08/12/21	08/12/21 21:29	WB
cis-1,2-Dichloroethene	ND		ug/m³	3.16	0.79	4	08/12/21	08/12/21 21:29	WB
trans-1,2-Dichloroethene	177		ug/m³	3.16	0.79	4	08/12/21	08/12/21 21:29	WB
1,2-Dichloropropane	ND		ug/m³	3.68	0.92	4	08/12/21	08/12/21 21:29	WB
cis-1,3-Dichloropropene	ND		ug/m³	3.64	0.91	4	08/12/21	08/12/21 21:29	WB
trans-1,3-Dichloropropene	ND		ug/m³	3.64	0.91	4	08/12/21	08/12/21 21:29	WB
1,4-Dioxane	ND		ug/m³	2.88	0.72	4	08/12/21	08/12/21 21:29	WB
Ethyl acetate	ND		ug/m³	14.4	14.4	4	08/12/21	08/12/21 21:29	WB
Ethylbenzene	1.56	J	ug/m³	3.48	0.87	4	08/12/21	08/12/21 21:29	WB
4-Ethyltoluene	ND		ug/m³	3.92	0.98	4	08/12/21	08/12/21 21:29	WB
Freon 113	ND		ug/m³	6.00	1.50	4	08/12/21	08/12/21 21:29	WB

alace

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

Maryland Ser es

Project: NORDT PROPERTY

Project Number: 47:12509-A Project Manager: Steve Hay

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

08/17/21 12:06

SVP-2

1081221-02 (Vapor) Sample Date: 08/10/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) Pi	repared b	y TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	5.60	5.60	4	08/12/21	08/12/21 21:29	WB
n-Heptane	3.77		ug/m ³	3.28	0.82	4	08/12/21	08/12/21 21:29	WB
Hexachlorobutadiene	ND		ug/m³	8.40	8.40	4	08/12/21	08/12/21 21:29	WB
Hexane	ND		ug/m³	56.0	56.0	4	08/12/21	08/12/21 21:29	WB
2-Hexanone	ND		ug/m³	3.28	0.59	4	08/12/21	08/12/21 21:29	WB
Isopropylbenzene (Cumene)	ND		ug/m³	4.40	1.60	4	08/12/21	08/12/21 21:29	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m ³	2.88	0.82	4	08/12/21	08/12/21 21:29	WB
Methylene chloride	ND		ug/m³	72.0	72.0	4	08/12/21	08/12/21 21:29	WB
Methyl ethyl ketone (2-Butanone)	3.66		ug/m³	2.36	1.36	4	08/12/21	08/12/21 21:29	WB
Methyl isobutyl ketone	ND		ug/m³	3.28	3.28	4	08/12/21	08/12/21 21:29	WB
Naphthalene	ND		ug/m³	4.40	2.80	4	08/12/21	08/12/21 21:29	WB
Propene	ND		ug/m ³	1.36	1.36	4	08/12/21	08/12/21 21:29	WB
n-Propylbenzene	ND		ug/m ³	3.92	1.60	4	08/12/21	08/12/21 21:29	WB
Styrene	ND		ug/m³	3.40	0.59	4	08/12/21	08/12/21 21:29	WB
1,1,2,2-Tetrachloroethane	ND		ug/m³	5.60	1.40	4	08/12/21	08/12/21 21:29	WB
Tetrachloroethene	ND		ug/m³	5.60	2.80	4	08/12/21	08/12/21 21:29	WB
Tetrahydrofuran	ND		ug/m³	2.36	0.59	4	08/12/21	08/12/21 21:29	WB
Toluene	14.9		ug/m³	3.00	1.40	4	08/12/21	08/12/21 21:29	WB
1,2,4-Trichlorobenzene	ND		ug/m ³	6.00	1.50	4	08/12/21	08/12/21 21:29	WB
1,1,1-Trichloroethane	ND		ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:29	WB
1,1,2-Trichloroethane	ND		ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:29	WB
Trichloroethene	ND		ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:29	WB
Trichlorofluoromethane (Freon 11)	1.80	J	ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:29	WB
1,2,4-Trimethylbenzene	0.98	J	ug/m³	3.92	0.98	4	08/12/21	08/12/21 21:29	WB
1,3,5-Trimethylbenzene	ND		ug/m³	3.92	0.98	4	08/12/21	08/12/21 21:29	WB
2,2,4-Trimethylpentane	ND		ug/m³	3.72	0.93	4	08/12/21	08/12/21 21:29	WB
Vinyl acetate	ND		ug/m³	2.80	2.80	4	08/12/21	08/12/21 21:29	WB
Vinyl bromide	ND		ug/m³	3.48	0.87	4	08/12/21	08/12/21 21:29	WB
Vinyl chloride	ND		ug/m³	2.04	0.51	4	08/12/21	08/12/21 21:29	WB
o-Xylene	2.43	J	ug/m³	3.48	0.87	4	08/12/21	08/12/21 21:29	WB
m- & p-Xylenes	6.78	J	ug/m³	6.80	1.70	4	08/12/21	08/12/21 21:29	WB
Surrogate: 4-Bromofluorobenzene		7	3-115	96 %	08/12/2	l	08/12/21 21:29		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

Maryland spectral Ser es

Project: NORDT PROPERTY

Project Number: 47:12509-A Project Manager: Steve Hay 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

08/17/21 12:06

SVP-3

1081221-03 (Vapor) Sample Date: 08/10/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-1	l5 (GC/MS) Pre	pared by	y TO-15 F	Prep					
Acetone	26.0		ug/m³	9.60	9.60	4	08/12/21	08/12/21 21:57	WB
Benzene	1.41	J	ug/m³	2.56	0.64	4	08/12/21	08/12/21 21:57	WB
Benzyl chloride	ND		ug/m³	4.00	1.00	4	08/12/21	08/12/21 21:57	WB
Bromodichloromethane	ND		ug/m³	5.20	1.30	4	08/12/21	08/12/21 21:57	WB
Bromoform	ND		ug/m³	8.40	2.10	4	08/12/21	08/12/21 21:57	WB
Bromomethane	ND		ug/m³	3.12	0.78	4	08/12/21	08/12/21 21:57	WB
1,3-Butadiene	ND		ug/m³	1.76	1.76	4	08/12/21	08/12/21 21:57	WB
Carbon disulfide	10.1		ug/m³	6.24	6.24	4	08/12/21	08/12/21 21:57	WB
Carbon tetrachloride	ND		ug/m³	5.20	1.30	4	08/12/21	08/12/21 21:57	WB
Chlorobenzene	ND		ug/m³	3.68	0.92	4	08/12/21	08/12/21 21:57	WB
Chloroethane	ND		ug/m³	2.12	1.06	4	08/12/21	08/12/21 21:57	WB
Chloroform	ND		ug/m³	3.88	0.97	4	08/12/21	08/12/21 21:57	WB
Chloromethane	ND		ug/m³	1.64	0.41	4	08/12/21	08/12/21 21:57	WB
3-Chloropropene	ND		ug/m³	2.52	0.63	4	08/12/21	08/12/21 21:57	WB
Cyclohexane	1.24	J	ug/m³	2.76	0.69	4	08/12/21	08/12/21 21:57	WB
Dibromochloromethane	ND		ug/m³	5.20	1.30	4	08/12/21	08/12/21 21:57	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	5.60	1.40	4	08/12/21	08/12/21 21:57	WB
1,2-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	08/12/21	08/12/21 21:57	WB
1,3-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	08/12/21	08/12/21 21:57	WB
1,4-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	08/12/21	08/12/21 21:57	WB
Dichlorodifluoromethane	5.14		ug/m³	3.96	3.96	4	08/12/21	08/12/21 21:57	WB
1,1-Dichloroethane	ND		ug/m³	3.24	0.81	4	08/12/21	08/12/21 21:57	WB
1,2-Dichloroethane	ND		ug/m³	3.24	0.81	4	08/12/21	08/12/21 21:57	WB
1,1-Dichloroethene	ND		ug/m³	3.16	0.79	4	08/12/21	08/12/21 21:57	WB
cis-1,2-Dichloroethene	ND		ug/m³	3.16	0.79	4	08/12/21	08/12/21 21:57	WB
trans-1,2-Dichloroethene	45.8		ug/m³	3.16	0.79	4	08/12/21	08/12/21 21:57	WB
1,2-Dichloropropane	ND		ug/m³	3.68	0.92	4	08/12/21	08/12/21 21:57	WB
cis-1,3-Dichloropropene	ND		ug/m³	3.64	0.91	4	08/12/21	08/12/21 21:57	WB
trans-1,3-Dichloropropene	ND		ug/m³	3.64	0.91	4	08/12/21	08/12/21 21:57	WB
1,4-Dioxane	2.16	J	ug/m³	2.88	0.72	4	08/12/21	08/12/21 21:57	WB
Ethyl acetate	ND		ug/m³	14.4	14.4	4	08/12/21	08/12/21 21:57	WB
Ethylbenzene	1.74	J	ug/m³	3.48	0.87	4	08/12/21	08/12/21 21:57	WB
4-Ethyltoluene	ND		ug/m³	3.92	0.98	4	08/12/21	08/12/21 21:57	WB
Freon 113	ND		ug/m³	6.00	1.50	4	08/12/21	08/12/21 21:57	WB

Ratacka Kons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

Maryland spectral Ser es

Project: NORDT PROPERTY

Project Number: 47:12509-A Project Manager: Steve Hay

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

08/17/21 12:06

SVP-3

1081221-03 (Vapor) Sample Date: 08/10/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G				× /	. ,		1	,	
Freon 114	ND	<u>repareu b</u>	ug/m ³	5.60	5.60	4	08/12/21	08/12/21 21:57	WB
n-Heptane	12.0		ug/m ³	3.28	0.82	4	08/12/21	08/12/21 21:57	WB
Hexachlorobutadiene	ND		ug/m ³	8.40	8.40	4	08/12/21	08/12/21 21:57	WB
Hexane	ND		ug/m³	56.0	56.0	4	08/12/21	08/12/21 21:57	WB
2-Hexanone	ND		ug/m³	3.28	0.59	4	08/12/21	08/12/21 21:57	WB
Isopropylbenzene (Cumene)	ND		ug/m³	4.40	1.60	4	08/12/21	08/12/21 21:57	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m³	2.88	0.82	4	08/12/21	08/12/21 21:57	WB
Methylene chloride	ND		ug/m³	72.0	72.0	4	08/12/21	08/12/21 21:57	WB
Methyl ethyl ketone (2-Butanone)	1.65	J	ug/m ³	2.36	1.36	4	08/12/21	08/12/21 21:57	WB
Methyl isobutyl ketone	ND		ug/m³	3.28	3.28	4	08/12/21	08/12/21 21:57	WB
Naphthalene	ND		ug/m³	4.40	2.80	4	08/12/21	08/12/21 21:57	WB
Propene	ND		ug/m³	1.36	1.36	4	08/12/21	08/12/21 21:57	WB
n-Propylbenzene	ND		ug/m³	3.92	1.60	4	08/12/21	08/12/21 21:57	WB
Styrene	ND		ug/m³	3.40	0.59	4	08/12/21	08/12/21 21:57	WB
1,1,2,2-Tetrachloroethane	ND		ug/m³	5.60	1.40	4	08/12/21	08/12/21 21:57	WB
Tetrachloroethene	ND		ug/m³	5.60	2.80	4	08/12/21	08/12/21 21:57	WB
Tetrahydrofuran	ND		ug/m³	2.36	0.59	4	08/12/21	08/12/21 21:57	WB
Toluene	40.2		ug/m³	3.00	1.40	4	08/12/21	08/12/21 21:57	WB
1,2,4-Trichlorobenzene	ND		ug/m³	6.00	1.50	4	08/12/21	08/12/21 21:57	WB
1,1,1-Trichloroethane	ND		ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:57	WB
1,1,2-Trichloroethane	ND		ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:57	WB
Trichloroethene	ND		ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:57	WB
Trichlorofluoromethane (Freon 11)	2.02	J	ug/m³	4.40	1.10	4	08/12/21	08/12/21 21:57	WB
1,2,4-Trimethylbenzene	1.18	J	ug/m³	3.92	0.98	4	08/12/21	08/12/21 21:57	WB
1,3,5-Trimethylbenzene	ND		ug/m³	3.92	0.98	4	08/12/21	08/12/21 21:57	WB
2,2,4-Trimethylpentane	ND		ug/m ³	3.72	0.93	4	08/12/21	08/12/21 21:57	WB
Vinyl acetate	ND		ug/m ³	2.80	2.80	4	08/12/21	08/12/21 21:57	WB
Vinyl bromide	ND		ug/m³	3.48	0.87	4	08/12/21	08/12/21 21:57	WB
Vinyl chloride	ND		ug/m³	2.04	0.51	4	08/12/21	08/12/21 21:57	WB
o-Xylene	1.74	J	ug/m³	3.48	0.87	4	08/12/21	08/12/21 21:57	WB
m- & p-Xylenes	6.43	J	ug/m³	6.80	1.70	4	08/12/21	08/12/21 21:57	WB
Surrogate: 4-Bromofluorobenzene		7	3-115	96 %	08/12/21		08/12/21 21:57		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

Maryland spectral Ser es

Project: NORDT PROPERTY

Project Number: 47:12509-A Project Manager: Steve Hay 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

08/17/21 12:06

SVP-4

1081221-04 (Vapor) Sample Date: 08/10/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (GC	C/MS) Pi	repared b	y TO-15 F	Prep					
Acetone	ND		ug/m ³	9.60	9.60	4	08/12/21	08/12/21 22:25	WB
Benzene	28.1		ug/m³	2.56	0.64	4	08/12/21	08/12/21 22:25	WB
Benzyl chloride	ND		ug/m³	4.00	1.00	4	08/12/21	08/12/21 22:25	WB
Bromodichloromethane	ND		ug/m³	5.20	1.30	4	08/12/21	08/12/21 22:25	WB
Bromoform	ND		ug/m³	8.40	2.10	4	08/12/21	08/12/21 22:25	WB
Bromomethane	ND		ug/m³	3.12	0.78	4	08/12/21	08/12/21 22:25	WB
1,3-Butadiene	ND		ug/m³	1.76	1.76	4	08/12/21	08/12/21 22:25	WB
Carbon disulfide	12.7		ug/m³	6.24	6.24	4	08/12/21	08/12/21 22:25	WB
Carbon tetrachloride	ND		ug/m ³	5.20	1.30	4	08/12/21	08/12/21 22:25	WB
Chlorobenzene	ND		ug/m³	3.68	0.92	4	08/12/21	08/12/21 22:25	WB
Chloroethane	ND		ug/m³	2.12	1.06	4	08/12/21	08/12/21 22:25	WB
Chloroform	ND		ug/m³	3.88	0.97	4	08/12/21	08/12/21 22:25	WB
Chloromethane	ND		ug/m³	1.64	0.41	4	08/12/21	08/12/21 22:25	WB
3-Chloropropene	ND		ug/m³	2.52	0.63	4	08/12/21	08/12/21 22:25	WB
Cyclohexane	1.24	J	ug/m³	2.76	0.69	4	08/12/21	08/12/21 22:25	WB
Dibromochloromethane	ND		ug/m³	5.20	1.30	4	08/12/21	08/12/21 22:25	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	5.60	1.40	4	08/12/21	08/12/21 22:25	WB
1,2-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	08/12/21	08/12/21 22:25	WB
1,3-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	08/12/21	08/12/21 22:25	WB
1,4-Dichlorobenzene	ND		ug/m³	4.80	1.20	4	08/12/21	08/12/21 22:25	WB
Dichlorodifluoromethane	ND		ug/m³	3.96	3.96	4	08/12/21	08/12/21 22:25	WB
1,1-Dichloroethane	ND		ug/m³	3.24	0.81	4	08/12/21	08/12/21 22:25	WB
1,2-Dichloroethane	ND		ug/m³	3.24	0.81	4	08/12/21	08/12/21 22:25	WB
1,1-Dichloroethene	ND		ug/m³	3.16	0.79	4	08/12/21	08/12/21 22:25	WB
cis-1,2-Dichloroethene	ND		ug/m³	3.16	0.79	4	08/12/21	08/12/21 22:25	WB
trans-1,2-Dichloroethene	142		ug/m³	3.16	0.79	4	08/12/21	08/12/21 22:25	WB
1,2-Dichloropropane	ND		ug/m³	3.68	0.92	4	08/12/21	08/12/21 22:25	WB
cis-1,3-Dichloropropene	ND		ug/m³	3.64	0.91	4	08/12/21	08/12/21 22:25	WB
trans-1,3-Dichloropropene	ND		ug/m ³	3.64	0.91	4	08/12/21	08/12/21 22:25	WB
1,4-Dioxane	2.59	J	ug/m³	2.88	0.72	4	08/12/21	08/12/21 22:25	WB
Ethyl acetate	ND		ug/m³	14.4	14.4	4	08/12/21	08/12/21 22:25	WB
Ethylbenzene	5.73		ug/m ³	3.48	0.87	4	08/12/21	08/12/21 22:25	WB
4-Ethyltoluene	ND		ug/m³	3.92	0.98	4	08/12/21	08/12/21 22:25	WB
Freon 113	ND		ug/m³	6.00	1.50	4	08/12/21	08/12/21 22:25	WB

alace

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

Maryland spectral Ser es

Project: NORDT PROPERTY

Project Number: 47:12509-A Project Manager: Steve Hay

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

08/17/21 12:06

SVP-4

1081221-04 (Vapor) Sample Date: 08/10/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) P	repared b	y TO-15 F	Prep (continued)					
Freon 114	ND		ug/m³	5.60	5.60	4	08/12/21	08/12/21 22:25	WB
n-Heptane	7.87		ug/m³	3.28	0.82	4	08/12/21	08/12/21 22:25	WB
Hexachlorobutadiene	ND		ug/m³	8.40	8.40	4	08/12/21	08/12/21 22:25	WB
Hexane	ND		ug/m³	56.0	56.0	4	08/12/21	08/12/21 22:25	WB
2-Hexanone	ND		ug/m³	3.28	0.59	4	08/12/21	08/12/21 22:25	WB
Isopropylbenzene (Cumene)	ND		ug/m³	4.40	1.60	4	08/12/21	08/12/21 22:25	WB
Methyl tert-butyl ether (MTBE)	3.32		ug/m³	2.88	0.82	4	08/12/21	08/12/21 22:25	WB
Methylene chloride	ND		ug/m³	72.0	72.0	4	08/12/21	08/12/21 22:25	WB
Methyl ethyl ketone (2-Butanone)	1.89	J	ug/m³	2.36	1.36	4	08/12/21	08/12/21 22:25	WB
Methyl isobutyl ketone	ND		ug/m³	3.28	3.28	4	08/12/21	08/12/21 22:25	WB
Naphthalene	ND		ug/m³	4.40	2.80	4	08/12/21	08/12/21 22:25	WB
Propene	ND		ug/m³	1.36	1.36	4	08/12/21	08/12/21 22:25	WB
n-Propylbenzene	ND		ug/m³	3.92	1.60	4	08/12/21	08/12/21 22:25	WB
Styrene	3.58		ug/m³	3.40	0.59	4	08/12/21	08/12/21 22:25	WB
1,1,2,2-Tetrachloroethane	ND		ug/m³	5.60	1.40	4	08/12/21	08/12/21 22:25	WB
Tetrachloroethene	ND		ug/m³	5.60	2.80	4	08/12/21	08/12/21 22:25	WB
Tetrahydrofuran	ND		ug/m³	2.36	0.59	4	08/12/21	08/12/21 22:25	WB
Toluene	51.0		ug/m ³	3.00	1.40	4	08/12/21	08/12/21 22:25	WB
1,2,4-Trichlorobenzene	ND		ug/m³	6.00	1.50	4	08/12/21	08/12/21 22:25	WB
1,1,1-Trichloroethane	ND		ug/m³	4.40	1.10	4	08/12/21	08/12/21 22:25	WB
1,1,2-Trichloroethane	ND		ug/m³	4.40	1.10	4	08/12/21	08/12/21 22:25	WB
Trichloroethene	2.58	J	ug/m³	4.40	1.10	4	08/12/21	08/12/21 22:25	WB
Trichlorofluoromethane (Freon 11)	3.60	J	ug/m³	4.40	1.10	4	08/12/21	08/12/21 22:25	WB
1,2,4-Trimethylbenzene	1.18	J	ug/m³	3.92	0.98	4	08/12/21	08/12/21 22:25	WB
1,3,5-Trimethylbenzene	ND		ug/m³	3.92	0.98	4	08/12/21	08/12/21 22:25	WB
2,2,4-Trimethylpentane	ND		ug/m³	3.72	0.93	4	08/12/21	08/12/21 22:25	WB
Vinyl acetate	ND		ug/m ³	2.80	2.80	4	08/12/21	08/12/21 22:25	WB
Vinyl bromide	ND		ug/m ³	3.48	0.87	4	08/12/21	08/12/21 22:25	WB
Vinyl chloride	ND		ug/m³	2.04	0.51	4	08/12/21	08/12/21 22:25	WB
o-Xylene	1.91	J	ug/m³	3.48	0.87	4	08/12/21	08/12/21 22:25	WB
m- & p-Xylenes	7.47		ug/m ³	6.80	1.70	4	08/12/21	08/12/21 22:25	WB
Surrogate: 4-Bromofluorobenzene		7	3-115	98 %	08/12/21	1	08/12/21 22:25		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

Maryland **spectral** Services

Project: NORDT PROPERTY

Project Number: 47:12509-A Project Manager: Steve Hay 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Analytical Chemistry Services

Reported: 08/17/21 12:06

Notes and Definitions

J	Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).
Е	The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate (CLP E-flag).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
%-Solids	Percent Solids is a supportive test and as such does not require accreditation

Ratacka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report Air Analysis by TO-15

Chain	of	Custody
Chain	or	Custody

Client Contact Information Project Manager: Stelle Hay Carrier: Fedex	
	1
Company: ECS Midi-Atlantic Phone: 540-362-2006 Samplers Name(s) Steve Harry Analysis/Matrix	
7670 Enon Drive site contact: Swife 101 Reanoble, VA 24019	1
Suite 101	
Roanolle, VA 24019	
Project Name: N/Or d+ Droor sty / Analysis Turnaround Time	
Site: NOTOLE Proor CHU Standard (Specify) X	
Project Name: Norde Property Analysis Turnaround Time Site: Norde Property Standard (Specify) X PO# U7: 12509-A Rush (Specify)	
Project Name: NOTCH: Proportival Analysis Turnaround Time Site: NOTCH: Proportival Standard (Specify) PO# U11: 13509-A Rush (Specify) PO# U11: 13509-A Rush (Specify) Client Sample ID Sample Time Start Sample Time Start Client Sample ID Date Start (24 hr clock) Date Start (24 hr clock)	
SUP-1 1839 1910 30 0 SAU 20911 1/091221.	01
SUP- 2 18491917 28 0.5 5-ED0821L - 01	יין
	1
SUP - 4 1901 1933 30 0 S-CE 007 1 - 04	
	1
	1
	-
	1
	1
	-
	1
	1
Special Instructions/QC Requirements & Comments:	1
Canisters Shipped by: Date/Time: Capisters Received by: Date/Time: 8/12/21 15:10	-
Canisters Shipped by: Date/Time: Canisters Received by: Date/Time: 0 Samples Relinguished by: Date/Time: Received by: Date/Time:	
Samples Relinquished by: Date/Time: Received by: Date/Time:	
Relinquished by: Date/Time: Received by: Date/Time:	
	12 of 1

TO-15_COC.xls

12 Page

Appendix III: Boring Logs

Project Name:	Nordt Pro	perty Pha	ase II				Sheet: 1 of 1	Boring No:	SB-01			
Client:	Roanoke	Regional	Airpor	t Com	mission	Pr	roject No.: 47:12509-A			F00		
Site Location:	1420 Coul 24012	ter Drive	NW, R	oanok	e, Virginia	Dril	ler: Jetco Inc.	ECS				
Latitude/Longit	ude:								T			
Depth/Elevation	PID Reading	Sample Number	Sample Recovery (in)	Graphic Log	Soil Classificat	tion		C	escription			
	- - - - - - - - - - - - - - - - - - -				SM/MH		Brown silt. Dry. No indication of impairment.					
	- 0.0 - 1.0 - 0.0 - 0.0 - 0.0	SB-01			СН		Red clay. Dry and co	ompact. No in	idication of impairm	nent.		
2020 20 20 25 25 25 25 25							Refusal encounter	ed at 19.0 fee END OF DF	t. RILLING AT 19.0 FT	/		
✓ WL (First Encountered)							Roring	g Started:	Sep 07 2021			
 ✓ WL (First Encountered) ✓ WL (Completion) 								g Completed:	Sep 07 2021			
Remarks:							Logge		Steven Hay			
						Princi	pal Engineer/ nsible PG:	Garnett Will	iams			

Project I	Name:	Nordt Pro	perty Pha	ase II				Sheet: 1 of 1	Boring No:	SB-02			
Client: Roanoke Regional Airport Commission								roject No.: 47:12509-A			-0-		
Site Location: 1420 Coulter Drive NW, Roanoke, Virginia 24012							Dri	ller: Jetco Inc.	Drill Rig:	GeoProbe	LCS		
Latitude	/Longitu	ıde:											
Depth/Elevation						Soil Classificat	ion	Description					
		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SB-02			CH		Asphalt Red clay. Dry and co	ghtly moist. I				
- - - - - - - - - - - - - - - - - - -	-	- - - - - - -											
☑ WL (First Encountered)								Boring	Started:	Sep 07 2021			
▼ WL (Completion)								Boring	Completed:	Sep 07 2021			
Remarks	5:			_	_	_	_	Logged		Steven Hay			
								al Engineer/ nsible PG:	Garnett Willi	ams			

Project Name: Nordt Property Phase II				Sheet: 1 of 1			Boring No:	SB-03				
Client: Roanoke Regional Airport Commission					Proj	ject No.: 47:	12509-A					
Site Location:	1420 Coul 24012	ter Drive	NW, Roa	anoke	e, Virginia	Drille	r: Jet	co Inc.	Drill Rig:	GeoProbe	-ECS	
Latitude/Longit											M	
Depth/Elevation	Depth/Elevation Depth/Elevatio					ion	Description					
		SB-03 (Metals) SB-03			CH	F			d at 18.0 fee END OF DF			
30												
☑ WL (First Encountered)								Started:	Sep 07 2			
▼ WL (Com Remarks:	pletion)								Completed:	Sep 07 2		
merridrks:								l By: al Engineer/ ssible PG:	Steven H Garnett			

Project Name:	Nordt Pro	perty Pha	ise II		Shee	et: 1 of 1	Boring No:	SB-04			
Client:	Roanoke	Regional /	Airport Com	mission	Project No	o.: 47:12509-A			FCo		
	1420 Coul 24012	ter Drive l	NW, Roanok	e, Virginia	Driller:	Project No.: 47:12509-A Driller: Jetco Inc. Drill Rig: GeoProbe					
Latitude/Longit	ude:				·						
Depth/Elevatior	PID Reading	Sample Number	Sample Recovery (in) Graphic Log	Soil Classifica	tion		De	escription			
	- - - - - - - - - - - - - - 0.0	SB-04		СН	Red cl	ay Dry. No inc	lication of im	ipairment.			
5	- 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0	(Metals)		СН				on of impairment.			
		SB-04		СН	Red cl	ay. Dry. No ind		ILLING AT 25.0 FT			
→ → → → → → → → → → → → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		ed)				Boring Logged	Started: Completed: By: al Engineer/	Sep 07 2021 Sep 07 2021 Steven Hay			

Project Name:	Nordt Pr	operty Pha	ase II		Shee	et: 1 of 1	Boring No:	SB-05			
Client:	Roanoke	Regional	Airport Com	mission	Project N	o.: 47:12509-A					
Site Location:	1420 Cou 24012	lter Drive	NW, Roanok	e, Virginia	Driller:	Driller: Jetco Inc. Drill Rig: GeoProbe					
Latitude/Longi	tude:								76		
Depth/Elevatio	ے PID Reading	Sample Number	Sample Recovery (in) Graphic Log	Soil Classificat	ion		Ľ	Description			
		SB-05 (Metals) SB-05		CH	Red cl	il. Dry. No indi lay. Dry. No ind hered rock. sal encountere	lication of im	npairment.			
30											
∠ WL (First		red)					Started:	Sep 07 202			
▼ WL (Com Remarks:	ipietion)					Logged	Completed:	Sep 07 202: Steven Hay			
						Princip	al Engineer/ nsible PG:	Garnett Wi			

Project Name:	Nordt Pro	perty Pha	ise II				Sheet: 1 of 1	Boring No:	SB-06		
Client: Roanoke Regional Airport Commission							oject No.: 47:12509-/	A		F00	
Site Location: 1420 Coulter Drive NW, Roanoke, Virginia 24012							er: Jetco Inc.	Drill Rig:	GeoProbe	ECS	
Latitude/Longit										м	
Depth/Elevation	Depth/Elevation BID Reading Sample Recovery (in) Soil Classification Sample Recovery (in) Sample R				ion	Description					
		SB-06 (Metals) SB-06			CH	e	Topsoil. Dry. No in Brown clay. Dry. N Weathered rock. Refusal encounte	o indication of	impairment.		
30											
✓ WL (First Encountered)								ng Started:	Sep 07 2021		
▼ WL (Corr Remarks:	ipietion)							ng Completed:	Sep 07 2021		
						Princ	ed By: cipal Engineer/ onsible PG:	Steven Hay Garnett Will	iams		